61 resultados para RECTAL DRAINAGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

锂的两个同位素(6Li和7Li)之间相对大的质量差导致它们在自然界的分馏强烈,仅在表生环境就达到了35‰。因而,作为一种有效的示踪剂被广泛地应用于研究宇宙事件、洋壳蚀变及海底热液活动、板块活动、壳幔演化以及示踪卤水来源等地球化学过程。近年来则以大陆风化过程的锂同位素地球化学研究为热点,主要研究方向包括流域尺度大空间范围的总体研究、风化壳剖面的精细研究以及实验室的模拟研究,均涉及水/岩作用过程的锂同位素分馏机理研究。但是,现有的研究结果有的需要进一步论证,有的相互之间存在矛盾,还有部分结论不能自圆其说。 因此,本项论文工作以地表环境过程的锂同位素地球化学研究为切入点,选择长江水系干流和主要支流的地表水、悬浮物和沉积物为研究对象。在低含量样品锂同位素分析方法研究和完善的基础上,就河流体系锂的来源、流域体系的锂同位素组成变化特征及其主要受控因素等方面开展探索性研究。 通过以上研究,本论文得出以下几点认识: 1、采用单一的阳离子树脂柱分离、提纯样品锂,MC-ICP-MS测定其同位素组成。其分析结果的准确度和精确度可以达到现阶段报道的最高水平。海水的锂同位素组成为+31.3±1.0‰(2σ)与前人测定结果的平均值(+31.2‰)接近;样品分析误差约为0.5‰(2σ),与TIMS的分析结果相似。 2、长江水系河水以富含HCO3-、Ca2+为主要特征,两者分别占阴、阳离子总量的70%和50%;其中,以Na+、Cl-含量的变化最大。长江河水的主要离子组成主要受流域岩石风化作用影响,蒸发结晶作用只在少数点起次要作用,而大气沉降的输入十分微弱。岩石风化作用以碳酸盐岩风化的影响最为显著,蒸发盐岩和硅酸岩的影响较小,仅限于长江流域的局部地区。 3、长江水系悬浮物的锂含量及δ7Li值变化较小,分别为41 µg/g~92 µg/g和-4.7‰~+0.7‰。沉积物的锂含量在13.26 µg/g~46.32 µg/g之间,略低于悬浮物的锂含量,而δ7Li较高,在+0.9‰和+9.1‰之间变化。悬浮物和沉积物的锂含量与Al2O3/SiO2、Fe2O3/SiO2、MnO/SiO2及K2O/SiO2等比值之间存在明显的正相关关系,与δ7Li值存在一定的负相关关系,主要表现为粘土矿物对锂的吸附作用,尤其是6Li。 4、长江水系河水的锂含量在1.04 µg/L和31.72 µg/L之间,平均为8.87 µg/L,呈现出从上游至下游逐渐降低的趋势,最高值出现在长江上游的攀枝花段(CJ1)。其锂同位素组成变化也较大,δ7Li值在+7.6‰和+28.1‰之间,但是却呈现出与锂含量变化相反的特征,即从上游至下游逐渐增加,最小值出现在长江上游的攀枝花段(CJ1)。 5、长江干流水体的锂摩尔浓度的倒数(1/Li)和δ7Li值之间存在明显的正相关关系,可能是两个端员组分混合的结果。综合考虑雨水、人为输入和碳酸盐岩对长江干流河水的贡献后,我们认为长江干流河水的锂应该是来自于流域岩石风化的贡献,即蒸发盐岩的溶解和硅酸岩的风化,两者对长江河水锂的贡献在78%和99%之间。 6、悬浮物总是比相应水体富集6Li,导致两者之间的锂同位素分馏明显。悬浮物和河水之间的锂同位素分馏系数(α矿物-流体)在0.976和0.993之间比变化,落在不同粘土矿物吸附产生的分馏范围内。长江上游地区的α矿物-流体落在室温下水铝矿和蒙脱石对锂吸附产生的分馏范围内,下游地区的α矿物-流体则与蛭石和高岭石对水体锂的吸附分馏范围内。除此之外,α矿物-流体还与悬浮物的量密切相关,尤其是在河水进入三峡库区之前。这种相关性同样是粘土矿物对6Li的优先吸附引起的。