244 resultados para RAY CRYSTAL-STRUCTURE
Resumo:
Self-assembly of tris-[2,2 ' -bipyridine]ruthenium(II) chloride with decatunstate produced a novel cation radical salt, [Ru(bpy)(3)](2)[W10O32] . 3DMSO. This is the first product of 2,2 ' -bipyridineruthenium(II)-polyoxometalates species. Crystal data: Monoclinic, P2(1)/c, a = 12.902(3) Angstrom, b = 21.487(3) Angstrom, c = 15.854(5) Angstrom, beta = 93.46(2)degrees, V = 4387(2) Angstrom (3), Z = 2, R-1 = 0.0599, wR2 = 0.1183. X-ray crystallographic study showed that the crystal structure was constructed by electyrostatic attraction and C-H . . .O hydrogen bonds between tris-[2,2 ' -bipyridine]ruthenium(II) and decatungstate polyanion. The tris-[2,2 ' -bipyridine]ruthenium molecules occupy cavities in the polyoxometalate lattice ordered along b-axis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Reaction of NdCl3, with AlCl3 and mesitylene in benzene gives complex [Nd(eta (6)-1,3,5-C6H3Me3) (AlCl4)(3)] (C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X-lay diffractions. The X-ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P2(1)/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, beta = 90.85 (2)degrees, V = 3.2529(6) nm(3), D-c = 1.573 g/cm(3), Z = 4. A comparison of bond parameters for all the reported Ln(eta (6)-Ar) (AlCl4)(3) complexes indicates that the bond distance of Ln-C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.
Resumo:
The title supramolecular compound, [HMDH2][(H2PMoMo11O40)-Mo-V] . 2AA . 3H(2)O . DMF (HMD = hexamethylene diamine; AA=acetaldehyde; DMF=N,N-dimethyl formamide), has been photochemically synthesized by using elemental analysis, IR, solid diffusion reflectance, electronic spectra, ESR spectra and X-ray single-crystal analysis. The crystallographic data: triclinic, P (1) over bar, a=14.092(2), b=14.347(3), c=14.358(3)Angstrom, alpha = 75.10(3), beta = 80.70(3), gamma = 80.73(3)degrees, V = 2746.6(10)Angstrom (3), Z = 2, M-r = 2081.68, D-c=2.517g/cm(3), F(000) =1970, mu (MoK alpha) =2.766mm(-1). The structure has been refined to R =0.0832 and wR=0.2638, by full-matrix least-squares method. The title compound is composed of hexamethylene diamine, two acetaldehyde molecules, three water molecules, one N,N-dimethylformamide and [(H2PMoMo11O40)-Mo-V](2-) heteropoly anion.
Resumo:
(2,4-C7H11)(2)Yb . DME was synthesized by the reaction of YbCl3 with K(2,4-C7H11)(2,4-dimethylpentadienyl potassium), and the single crystal X-ray diffraction showed that the complex exists in a cis- staggered conformation. Thf crystal of the compound belongs to the monoclinic space group P2(1)/n with a = 0.675 2 (1) nm, b = 1.490 6 (1) nm, c = 1.529 3 (2) nm, beta = 97.55 (2)degrees, V = 1.977 79 (4) nm(3), Z = 4, F(000) = 735.8 e, mu = 49.49 cm(-1), R = 0.033 and R-w = 0.032. The title complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
The novel amino-acid-containing polyoxometalate Ka(6) [Cu(Ala)(2) (H2O)(2)](2) [Cu-4 (H2O)(2) . (AsW9O34)(2)] . 16H(2)O was synthesized from the reaction of K-10[Cu-4(H2O)(2)(AsW9O34)(2)] . 20H(2)O with beta -alanine, Its structure has been determined by single crystal X-ray diffraction. It crystallizes in the triclinic space group P (1) over bar, with a=1. 196 3(2) nm, b=1. 536 5(3) nm, c=1. 591 4(3) nm, alpha =93. 97(3)degrees, beta= 110. 88(3)degrees, gamma =101. 07(3)degrees, V=2. 651 8(9) nm(3) and Z=1. Least-squares refinement of the structure leads to R and R-w factors of 0. 067 3 and 0. 162 8, respectively. An unusual structural feature of the compound is that the polyanion [Cu-4(H2O)(2) (AsW9O34)](10-) is linked with the amino-acid complex of Cu2+ by a mu -oxygen atom.
Resumo:
A novel heteropoly tungstophosphates, H-8[P4W14O58Na4(H2O)(20)] . 16H(2)O, was synthesized by hydrothermal method and characterized by elemental analysis, IR spectrum and single-crystal X-ray structure analysis. The thermal stability of the compound was investigated by using TG-DTA. The crystal is triclinic system with space group P (1) over bar, a = 1. 137 9(2) nm, b=1. 363 2(3) nm, c=1. 627 1(3) nm; alpha=78. 20(3)degrees, beta=71, 20(3)degrees, gamma= 71. 62(3)degrees; V = 2. 252 5(8) nm(3), Z=1, M-r= 4 374. 38, D-c = 3. 225 mg/cm(3), mu = 18. 007 mm(-1), F(000)=1 972, R=0. 074 2, R-w=0. 200 4. The result of structure analysis shows that the anion of the compound consists of two PW7O29Na2(H2O)(10) subunits and two linked phosphorous atoms. A kind of microporous with size of 0. 661 4 nm X 0. 318 9 nm was formed in the crystal structure.
Resumo:
Co(En)(3)MoO4 was synthesized by using the method of hydrothermal synthesis and characterized by elemental analysis, IR, ESR and single-crystal X-ray methods. It crystallizes in hexagonal space group P (3) over bar C1 with a=1.596 4(2) nm, b=1.596 4(2) nm, c = 0.993 5(2) nm, alpha=beta=90 degrees gamma=120 degrees, M-c=399.18, V=2.192 6(6) nm(3), D-c=1.814 g/nm(3), Z=6, F(000)=1 2181 R-1=0.070 3, R-w=0.220 7. According to separation of anion which acted on electrostatic potential, the anion and cation ions formed a type of organic and inorganic material.
Resumo:
The crystal structure of K7Na3[H2W12O42]3 . 6H(2)O was determined by X-ray crystallography,and refined to R=0.0864 based on 7024 observed reflections (I>2 sigma(I)). The crystallographic parameters are a=11.755(2), b=13.0493(3), c=16.289(3) Angstrom; alpha=77.13(3)degrees, beta=82.92(3)degrees, gamma=89.65(3)degrees, triclinic, space group, P (1) over bar, V=2416.7(8) Angstrom(3), Z=2, M-r=3330.98, D-cal=4.578Mg/m(3), F(000)=2904; mu (MoK alpha)=29.170mm(-1), T=293K. Two independent polyanions are centered respectively at 1,1,1/2 and 1/2, 1/2, 0, approximately perpendicular to each other with dihedral angle between the equatorial planes of the molecules at 96 degrees. K+ and Na+ respectively occupy the clefts of the two discrete polyanions.
Resumo:
Sandwich-like heteropoly molybdochromophosphates of supermolecular compound [NH3(CH2)(6)NH3](2)H-3{Cr[Mo6O15(HPO4)(H2PO4)(3)](2)}. 4H(2)O has been hydrothermally synthesized and the single crystal structure has been determined by X-ray diffraction. The crystal data are has follows: triclinic, space group P (1) over bar a=12.156(2), b=12.809(3), c=13.530(3) Angstrom, alpha=102.46(3)degrees, beta=93.67(3)degrees, gamma=93.46(3)degrees, V=2046.9(7) Angstrom(3), Z=1, M-r=2768.69, D-c=2.246 g/cm(-3), F(000)=1337, mu=2.162 mm(-1). The structure has been refined to R=0.0666 and wR=0.1745 by full-matrix least-squares method. The title compound is composed of 1, 6-diaminohexane, water molecules, and {Cr[Mo6O15(HPO4)(H2PO4)(3)](2)}(7-) anion which consists of six oxygen atoms from two [Mo6P4] units with a sandwich-like transition metal atom Cr located at the center of symmetry.
Resumo:
A new butterfly-like cluster [WOS3Cu2(PPh3)(2)(Py)(2)] was obtained by reacting [WOS3Cu2(PPb3)(3)] with pyridine. The crystal structure of the cluster has been determined by X-ray diffraction. The compound shows an unusual folded structure, in which two 4-coordinate Cu atoms are bound to the WOS3 moiety via two S-S edges.
Resumo:
By electrocrystallization of 2,6-[4,5-bis(n-butylsulfanyl)-1,3-dithiol-2-ylidene]-4,8-bis(6-iodo-n-hexyloxy)-1,3,5,7-tetrathia-s-indacene (BHBDTI) and [NBu4](4)[SiMo12O40] in the mixed solvent CHCl2CH2Cl and CH3CN, the new radical-ion salt [C42H60Cl2O2S12](2)[SiMo12O40] was prepared. It was characterized by means of IR and ESR spectroscopy and X-ray diffraction. In the crystal structure, organic radical dications and silicomolybdate anions are alternatively arranged along the a axis to form a 1-D conducting layer. The organic layer consists of two isolated groups of BHBDTI divided by the (011) plane without short interatomic contacts. However, in each group, BHBDTI molecules associate with each other in a head to tail manner running along the [011] direction and face-to-face overlapping with a relative shift by approximately one TTF subunit along the long axis of the molecule and a slight shift along the short axis of the molecule with significantly short S ... S contacts. The room-temperature d.c. conductivity determined by the two-probe method is 10(-4) S cm(-1), suggesting that the compound is a semiconductor.
Resumo:
A new Er(III)-Na(I) coordination polymer of stoichiometry [NaEr2L5(H2O)(6)(NO3)](NO3). 3.5H(2)O (HL = picolinic acid N-oxide) has been synthesized and characterized by single-crystal X-ray analysis. Crystals are triclinic, P (1) over bar with a = 9.823(2), b = 12.453(2), c = 20.643(4) Angstrom; alpha = 98.49(3), beta = 101.40(3), gamma = 108.69(3)degrees; V = 2284(1) Angstrom(3); Z = 2. Of the two independent eight-coordinate erbium(III) ions in this complex, one is surrounded by four bidentate chelating L ligands, and the other by one bidentate chelating L ligand, four aqua ligands and two anti-carboxylate oxygen atoms from two neighboring [ErL4] units. The sodium(I) ion is in a distorted octahedral environment, being coordinated by a unidentate nitrate anion, three aqua ligands and two anti-carboxylate oxygen atoms from two adjacent [ErL4] units. The complex is built from zigzag chains of syn-anti carboxylate-bridged erbium(III) moieties directed in the a direction, which are cross-linked pairwise by aqua-bridged dimeric sodium(I) units. The resulting composite polymeric chains are further connected by hydrogen bonds to form a three-dimensional network.
Resumo:
The reaction of diglycolic acid, O(CH2CO2H)(2), with Cu(NO3)(2) . H2O and lanthanoid nitrate hydrate produces a series of novel Ln-Cu mixed metal complexes, [Ln(2)CU(3){O(CH2CO2)(2)}(6)]. nH(2)O (Ln = La, Nd, n = 9; Ln = Er, n = 6), which have been characterized by elemental analysis, i.r. spectroscopy, magnetic measurements and X-ray crystallography. The Ln(3+) and Cu2+ ions are connected by the carboxylate groups of the ligands, resulting in the formation of a complicated network.
Resumo:
The crystal structure, morphology and polymorphism induced by uniaxial drawing of poly(ether ether ketone ketone) [PEEKK] have been studied by transmission electron microscopy (TEM), electron diffraction (ED) and wide angle X-ray diffraction (WAXD). On the basis of WAXD and ED patterns,the crystal structure of unoriented PEEKK is determined to have two-chain orthorhombic packing with unit cell parameters of a 0.772 nm, b = 0.600 nm, c = 1.004 nm (form I), A stress-induced crystal modification (form II) is identified and found to possess a two-chain orthorhombic lattice with unit cell dimensions of a = 0.461 nm, b = 1.074 nm, c = 1.080 nm. The 7.5% increase in c-axis dimension for form II is attributed to an overextended chain conformation, arising from extensional deformation during uniaxial drawing and fixed ''in-situ'' through strain-induced crystallization. The average ether-ketone bridge bond angles in form II crystal are determined to be 148.9 degrees by using standard bond lengths. The crystal morphology of PEEKK bears a great similarity to that of PEEK. The crystals grow in the form of spherulites and have the b-axis of unit cell radial. The effects of draw rate on strain-induced crystallization and induction of form II structure are also discussed.
Resumo:
The polycrystalline powder of para- and meta-dimethyl ester of pyromellitic acid (PMDE) have been prepared by fractional crystallization, and their crystal structures have been determined by Wide-Angle X-ray Diffraction (WAXD). Both p-PMDE and m-PMDE was found to be orthorhombic crystal system, and their unit cell parameters a = 0.840 nm, b = 0.707 nm, c = 1.136 nm and a = 1.032 nm; b = 0.835 nm, c = 0.714 nm, respectively. Space group all belongs to P-mmm. p-PMDE has two molecules per unit cell with crystal density 1.388 g . cm(-3), while m-PMDE has two molecules per unit cell with crystal density 1.522 g . cm(-3). Indices of crystal diffraction peaks are also detailed in the present work. The difference in crystal structures between p-PMDE and m-PMDE has thus been used to explain the curing behavior of isomerically pyromellitic dianhydride-based poly(amic ester)s.