119 resultados para RACEMIC LACTIDE
Ring-opening polymerization and block copolymerization of L-lactide with divalent samarocene complex
Resumo:
Divalent samarocene complex [(C5H9C5H4)(2)Sm(tetrahydrofuran)(2)] was prepared and characterized and used to catalyze the ring-opening polymerization of L-lactide (L-LA) and copolymerization of L-LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L-LA was retained. The structure of the block copolymer of CL/L-LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)-b-P(L-LA) copolymer were monitored with real-time hot-stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL-b-P(L-LA) copolymer was demonstrated through AFM observation.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
Racemic cis-BCH-189 can be resolved to (-)-enantiomer (lamivudine) and (+)-enantiomer by esterification of cis-2-hydroxymethyl-5-(N-4(')-acetylcytosine-1'-yl)-1,3-oxathiolane and (+)-menthyl chloroformate in CH3CN with pyridine as base. The two diastereomers of ester were seperated by recrystallization in methanol at 0degreesC. Lamivudine was obtained by deprotection of (-)-diastereomer with high yield.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
1. 合成了三齿水杨醛稀土配合物,发现配体中含有柔性取代基易生成均配物,而刚性较强的配体生成单烷基配合物。考察了单体浓度、聚合时间等因素对配合物催化丙交酯聚合活性的影响。 2. 以含二苯基膦苯胺的β-二酮单亚胺三齿配体合成了双配体单烷基稀土配合物,空间位阻比较大,因而引发丙交酯聚合的速度比较快。 3. 合成了含甲氧基侧基的芳氧胺四齿双烷基配合物,并合成了芳氧胺与茂(茚)混配的稀土单烷基配合物。首次将它们用于丙交酯的聚合,实验结果发现,双烷基配合物中的双烷基是作为双活性中心起作用的。 4. 合成了含双吡咯烷的稀土烷基配合物,将之应用于丙交酯的聚合,发现位阻大的配合物催化聚合可控性好。并应用双吡咯烷配合物进行了丙交酯和己内酯的共聚合研究。
Resumo:
本文首次制备了纳米生物玻璃左旋聚乳酸复合材料,并针对两者之间界面不相容的现象,对生物玻璃表面进行了有针对性的改性;对其纳米颗粒的分散能力进行了表征,并对复合材料的力学性能和生物相容性进行了研究,以期能得到一种具有良好力学性能和生物活性的可降解骨组织修复材料。 (1) 以正硅酸乙酯为硅源,以磷酸氢二铵为磷源,硝酸钙为钙源制备了纳米生物玻璃的凝胶颗粒(BAG, SiO2: CaO: P2O5 =37/54/9, mol/mol) ;以其表面的硅羟基为引发点,采用丙交酯开环聚合原位改性的方法对其进行了表面改性得到了改性纳米生物玻璃的凝胶颗粒(m-BAG);通过改性,使其表面性质由亲水性变为亲油性,提高了其在聚乳酸基体内的分散能力;m-BAG/PLLA复合材料改变了改性以前BAG/PLLA力学性能随生物玻璃含量增加而不断下降的趋势,保持了聚乳酸的力学性能,在m-BAG含量为2%的时候其拉伸强度相对于纯聚乳酸提高16%左右,模量达到纯聚乳酸的1.4倍;而当m-BAG含量为10wt%,复合材料保持与纯聚乳酸相似的拉伸强度,而此时10wt%BAG/PLLA复合材料的力学性能只有纯聚乳酸的80%; 生物玻璃凝胶/聚乳酸复合材料在模拟体液中表现了较高的钙沉积能力,最后在其表面都形成了羟基磷灰石的晶体,但是表面改性使其钙沉积的速度降低,在一定程度上减小了其活性;细胞试验表明,不论生物玻璃凝胶/聚乳酸复合材料还是改性后的复合材料都表现出了很高的细胞黏附性能和增殖性能。 (2) 通过煅烧将生物玻璃的凝胶颗粒制备了生物玻璃纳米颗粒,通过XRD和TGA确定该组成类型的生物玻璃的结晶温度在826ºC,我们选择其经过600ºC煅烧的非晶态的材料作为我们进一步研究的对象。通过六次甲基异氰酸酯作为偶联剂,我们将低分子量的Mn=9,700Da的聚乳酸偶连到生物玻璃纳米颗粒的表面;通过改性提高了生物玻璃/聚乳酸的拉伸强度和拉伸模量,并提高了其分散能力;模拟体液试验表明,其复合材料具有很强的钙沉积能力,细胞培养证明了优异的生物相容性;而且通过试验可以看出,生物玻璃相对于其原始的纳米凝胶颗粒具有更优异的钙沉积能力和细胞相容性。 (3) 通过将三臂聚乳酸添加到线性聚乳酸的内部,大幅度的提高了其冲击强度,当三臂聚乳酸含量达到2wt%-8wt%时,冲击强度达到线性聚乳酸的2倍左右;通过偏光显微镜观察,可以看到三臂聚乳酸提高了线性聚乳酸的结晶成核速度,使其最后晶体数量增多,形态变小;而通过等温结晶试验表明其结晶速度提高,结晶是以异相成核的三维生长方式进行的;流变学试验表明加入三臂聚乳酸有力的降低了体系的复数粘度,当三臂聚乳酸含量达到8%时候,在频率为1-10rad/s其数值仅为线性聚乳酸的60%左右,这种变化将提高其加工成型能力。 (4) 通过十六烷基三甲基溴化铵作为模板剂,制备了具有多孔结构的生物玻璃纳米颗粒,其孔径在2nm左右,比表面积为264m2/g; 通过模拟体液试验表明,其具有很强的生物活性,规整结构在浸泡的前8小时被破坏,体系中P和Ca的含量大幅度上升,在24小时以后形成了羟基磷灰石的晶体。该类型的材料有望应用于制备药物缓释材料,用于骨修复初期的感染和炎症治疗。
Resumo:
可生物降解的两亲性嵌段共聚物PLA-PEG飞所制备的胶束或纳术粒子,作为潜在的药物控制释放体系弓!起人们广泛的兴趣。,方们授有寿比山于PEG链的空间位阴.效应可以避免单核噬菌体的吞噬,、并且可以通过控制可降解部分的降解行为实现药物的持续释放,使在微载体内所包载的药物分子持续释放出来。尽管高聚物的胶束和纳米粒子作为药物的胶体载体已作厂泛研究,但是对其本身物理化学性质与应用之间的联系研究甚少。因此本文对一系列PLLA和PEG两嵌段和三嵌段共聚物的自聚集行为进行了细致研究,得到了以卜结论:1.以花为"模型药物",通过荧光探针技术对一系列两亲性共聚物在水呀招夜和NaCI溶液种的胶束化行为进行了研究。这些共聚物是由一种新型氨钙催化利,以人分J,的聚乙二醇(PEG)为引发剂,引发丙交酷开环聚合得到,,其中囚定长度阴 PEG段分剐为44,104和113环氧乙烷早兀,PLLA的长没在15-280乳酸中元之间。由于氨钙准活性的特点,这些共聚物的分散度较低,均在1.1-1.3之间。其临界胶束浓度cmc发现随PLLA的含量增加I荆氏。具有同一PEG长度的两嵌段和三嵌段共聚物cmc值的截然差别为它们胶束的构型不同提供了证据。同时也发现了NaCI的加入对丫EG段和争LLA段较短洪聚物的cmc的降低有明掀笋作用,而对具有较长PEG段或较长PLLA段的共聚物的cmc基本上没有什么影响。2.通过荧光探余十技术测定花在这一系列共聚物胶束溶液锄勺配分系数在0.2*10~5至1.9*10~5之间,对于同-PEG段的共聚物,花在其胶柬相中的配分系数随PLLA的含量的增加而增加。另外发现NaCl的加入能够促进花在胶束相中的配分。3.通过透射电子显微镜研究了两嵌段共聚物水溶液胶束的形貌,发现胶束的粒径和分散度均随PLLA段的增加而增加:通过原子力显微镜研究"这些纳米粒子退火前后的形貌变化,发现退火后纳米粒子重新自聚集为类似于神经网络红脚乏的"纳米条带"结构,其中心为类似"神经元"的团簇结构,而周困为支化的车由突"分支结构,这与文献上提到的只有三嵌段共聚物能够形成支化的"纳米条带"结构截然不同,其自聚集机理在进,步研究之中。4.以亲水性的荧光素为荧光探针研究了两嵌段共聚物在甲苯中的胶束化行为,发现其clnc值随PLLA段的含量增加而降低,相对于PEG段,PLLA段在其胶宋化过程中起主要作用。通过1HNMR证明两嵌段共聚物在甲苯中的胶束具伯以PLLA段为"核"、PEG段为"壳"的"核-壳"结构,这种胶柬化行为通过溶解度参数的差异进行了解释。5.通过原子力显微镜发现,当这些胶束滴加在云母表面上经过热处理后,这些胶束重新自聚集成为规则的具有平缓隆起的纳米结构,这与由水中得到的胶柬热处理后的形貌截然不同,并对此进行了进一步解释。由XPS分析认为主要是PEG段覆盖在PLLA段表面。
Resumo:
本论文针对目前用于骨固定和骨修复的聚乳酸/无机纳米粒子复合材料的界面强度低、粒子分散不均匀以及所采用生物活性无机填料粒径较大等缺点,对轻基磷灰石及生物活性玻璃无机纳米粒子的制备、界面改性、粒子的分散、以及复合材料的制备进行了较详细的论述。另外,对材料的力学性能、结晶性能和生物相容性进行了较细统的测试和研究。(1)以磷酸和氢氧化钙为原料在40-80℃的反应条件下制备出了米粒状和棒状的HAP粒子,然后在-50℃的冷冻干燥机中干燥48h,得到白色的HAP粉末。用TEM、SEM、WAXD、FTIR等对所得产物进行了表征。研究结果表明,提高反应温度有利于生成高结晶度的长棒状HAP颗粒。此外,锻烧温度对粒子的形貌和结晶度也有很大的影响,锻烧温度越高,粒子的结晶度就越高,并且,当锻烧温度提高到900℃以上时,HAP粒子的形貌会由长棒形逐渐变成球形。(2)在高纯氢气气氛中,以辛酸亚锡为催化剂的反应条件下使左旋丙交酷开环聚合,直接接枝到HAP的表面,使HAP的粒子表面覆盖一层聚乳酸分子,使HAP的亲油性能得到提高。对表面接枝的轻基磷灰石(g-HAP)用31PMAS-NMR、FTIR、TGA、TEM、SEM和GPC进行了表征。结果表明,用此方法可在HAP表面接枝6%的PLLA。(3)用溶剂法制备了PLLA/g-HAP复合材料,并对其机械性能、结晶性能和生物相容性进行了表征。试验结果表明:与纯HAP相比,g-HAP粒子更容易均匀分散到PLLA基体中,当填料含量达到4%时,PLLAg-HAP复合材料的力学性能达到最好。由Dsc和PoM的实验结果表明,g-HAP粒子在聚合物基体中可以起到异相成核剂的作用。细胞实验结果表明,PLL刀g-HAP复合材料的细胞相容性明显优于纯的PLLA和PLLA/HAP复合材料。(4)以正硅酸乙酷(TEOS)、硝酸钙(Ca(NO3)2)和磷酸氢二按((NH4)ZHPO4)为原料,利用在酸性溶液中水解,碱性溶液中缩聚沉淀,然后将反应液离心分离,冷冻干燥,最后在马弗炉中锻烧的方法,得到白色的5102-coo-PZos三元生物活性玻璃粉末。SEM和TEM分析结果表明,所得到生物活性玻璃是粒径在40nln左右的球形颗粒,且粒径分布非常均匀。(5)以正硅酸乙酷(TEoS)和硝酸钙(Ca(NO3)2)为原料,利用在酸性溶液中水解,碱性溶液中缩聚沉淀,然后将反应液离心分离,冷冻干燥,最后在马弗炉中锻烧的方法,得到粒径为200nm左右的球形SiO2-CaO二元生物活性玻璃粉末。
Resumo:
1-甲基-2-甲氧羰基-3, 6, 8-三羟基-7-甲氧基蒽醌是从唐菖蒲干球茎中分离到的具有环氧化酶-2选择性抑制活性的多取代蒽醌类化合物。本文试图合成该化合物,实现了其类似物的合成,同时发现了几个未见报道的反应。 1.通过Diels-Alder 反应合成了关键中间体——3-甲基-5-羟基-1, 2, 4-苯三甲酸三甲酯,1-COOMe选择性水解产物与1, 2, 3-三甲氧基苯进行分子间Friedel-Crafts反应的产物再进行分子内Friedel-Crafts反应得到了目标产物的类似物1-甲基-2-甲氧羰基-3-羟基-6,7,8-三甲氧基蒽醌(路线1)。目标产物及其它类似物的合成正在进行中。 2.以乙酰乙酸甲酯和巴豆醛为原料,经过Michael加成、分子内的Aldol反应、芳香化、选择性甲酰化和还原反应,得到关键中间体2-甲基-3-羟甲基-6-甲氧基苯甲酸甲酯及其衍生物。通过该化合物与3,4,5-三甲氧基苯甲酸甲酯进行Friedel-Crafts烷基化反应得到了多取代的二苯基甲烷衍生物,拟进一步关环合成目标化合物(路线2)。 3.发现邻甲氧基苯甲酸甲酯中酯甲基可以被正丁基锂和仲丁基锂中烷基交换生成相应的酯,反应的机理不明确。当使用叔丁基锂时,得到的是邻甲氧基苯基叔丁酮,这个方法可以用来合成芳基叔丁酮类化合物。 4.以2-苄氧基-6-甲基苯甲酸甲酯为原料进行氯甲基化反应时,以苯和二氯乙烷作溶剂,发生了苄基的迁移和芳环的偶联,分别得到2,2'-二甲基-3,3'-二甲氧羰基-4,4'-二羟基联苯和2,2'-二甲基-3,3'-二甲氧羰基-4,4'-二羟基-5,5'-二苄基联苯。这是对称联苯合成的新方法。 5.水杨酸羟基邻对位的选择性甲酰化可以分别通过水杨酸和水杨酸甲酯用HMTA/CF3COOH来实现。 6.Lewis酸催化3,4,5-三甲氧基苄醇环化成1, 2, 3, 6, 7, 8, 11, 12, 13-nonamethoxyl-10,15-dihydro-5H-trbibenzo [a, d, g] cyclononene (NDTC),产率(54%)高于已有方法(12%)。 Methyl 3,6,8-trihydroxy-7-methoxy-1-methylanthraquinone-2-carboxylate is a new COX-2 selective inhibitor isolated from Gladiolus gandavensis. Two strategies were investigated to synthesis this compound, in which some important reactions were discovered. 1. The key intermediate 5-hydroxy-3-methylbenzene-1,2,4-tricarboxylic acid 2,4-dimethyl ester was prepared via Diels-Alder reaction followed by selective hydrolysis of 1-COOMe. This compound was coupled with 1,2,3-trimethoxybenzene and the product undergo intramolecular Friedel-Crafts reaction to give methyl 3-hydroxy-5,6,7-trimethoxy-1-methylanthraquinone-2-carboxylate (1st route). The target compound and other analogues are being prepared with the same procedure. 2. The key intermediates methyl 3-hydroxymethyl-6-methoxy-2-methylbenzoate and its derivatives were prepared starting from crotonaldehyde and methyl acetoacetate via Michael addition, intramolecular aldol reaction, aromatization, formylation and reduction. The intermediates were coupled respectively with derivatives of gallic acid to give polysubstituted diphenylmethane. However, attempts to cyclize these compounds to the target compounds and analogues were not successful (2nd route). 3. In the process for ortho-lithiation of methyl 2-methoxybenzoate, the substrate converted respectively to n-butyl 2-methoxybenzoate and sec-butyl 2-methoxybenzoate when n-BuLi and sec-BuLi were used. However, tert-BuLi reacted with methyl 2-methoxybenzoate afford 2-methoxyphenyl tert-butyl ketone, which could be used to synthesize aryl tert-butyl ketones. 4. The transformtion of methyl 2-benzoxy-6-methylbenzoate to dimethyl 4,4'-dihydroxy-2,2'-dimethylbiphenyl-3,3'-dicarboxylate in benzene, and dimethyl 5,5'-dibenzyl-4,4'-dihydroxy-2,2'-dimethylbiphenyl-3,3'-dicarboxylate in 1,2-dichloroethane in the presence of ZnCl2 provides a new method for the synthesis of symmetric biphenyl. 5. The formylation of salicylic acid at C-5 and methyl 2-hydroxybenzoate at C-3 could be regioselectively realized by using HMTA/CF3COOH. 6. Racemic 1, 2, 3, 6, 7, 8, 11, 12, 13-nonamethoxyl-10, 15-dihydro-5H-trbibenzo [a, d, g] cyclononene was prepared via Lewis acids catalyzed trimerization of 3, 4, 5-trimethoxylbenzyl alcohol with yield (54%) higher than the reported procesure (12%).
Resumo:
从新几内亚核桃木的树皮中分离得到的吲哚类喹诺里西定生物碱10-Desbromoarborescidine A,因发现其具有阻滞钙离子通道的活性而倍受关注。10-Desbromoarborescidine A由A、B、C、D四个环组成,只有一个手性中心,是吲哚生物碱中结构较简单的一种,常作为此类生物碱全合成方法的模型化合物。但迄今为止,能高效而简便的实现手性10-Desbromoarborescidine A不对称全合成方法线路不多,大多数以不对称诱导的方式建立其手性中心,手性催化的方式仅有一例金属催化。从逆合成分析可知,Desbromoarborescidine A的全合成可以通过亚胺不对称催化还原进行关键的手性中心构建,而本课题组在之前的研究中通过手性有机小分子催化剂的发展,已将三氯硅烷氢转移还原亚胺发展成了一类简便实用、高效、高对映选择性并具有优良底物适应范围的不对称催化反应,我们希望以这一反应作为关键手段,发展一条Desbromoarborescidine A及其类似物不对称合成新路线。 根据我们设计的新路线,首先成功合成了其关键中间体,然后我们进行了关键的不对称催化尝试。用本实验室已有的高性能有机小分子催化剂虽得到了较好的对应选择性,但是产率很低。同时,为了验证整条线路的可行性,我们也用消旋的中间体进行拉通线路的尝试。但不幸的是,在脱除保护基时遇到了很大困难。尝试换不同的保护基,或改变脱保护基的顺序,都未能成功合成目标产物。究其原因可能是由于吲哚的特殊性造成的,吲哚类亚胺与常规的芳香亚胺有较大的差异,其NH基团无论保护还是不保护,对与其2位相联接的C=N双键均有很大的影响,导致其不对称催化还原难以进行。另外,由于所设计的还原产物含有处在吲哚苄位的胺基,稳定性较差,造成保护基脱除困难。 烯胺C-亚磺酰化反应是本课题组最近发现的一个新反应,之前未见文献报道。本研究对该反应进行了反应条件优化和底物扩展,发现带Cbz,Ac,COt-Bu,CO2Et,Bz等保护基的一系列环状和非环状烯胺在亚磺酸钠、DMAc和MeSiCl3的共同作用下能高效高产率生成β-胺基烯基亚砜类新化合物,为合成多官能团化的烯基亚砜新化合物提供了一条简便实用的途径。 The main constituent of Dracontomelum mangiferum B1, indoloquinolizidine alkaloid 10-Desbromoarborescidine A, has drawn great attention due to its calcium channel blocking activity. Its molecular structure is relatively simple compared with the other alkaloids of the same type, which has only one chiral center, albeit with four cycles A, B, C, and D. This compound is often used as a model target for exploring different strategies for the total synthesis of indole alkaloids. Nevertheless, so far there still lack practical and highly efficient methods for the asymmetric total synthesis of 10-Desbromoarborescidine A. Most of the current available methods rely on stoichiometric asymmetric synthesis for the construction of the chiral center. There is only one example reporting utilization of asymmetric catalysis, but with transition metal complex as the catalyst. Our retrosynthetic analysis shows that catalytic asymmetric reduction of imine could be used as the key step for the construction of the chiral center of Desbromoarborescidine A. Since in the previous studies our group has developed the asymmetric reduction of imines by trichlorosilane into a practical and highly efficient and enantioselective method using newly designed chiral organocatalysts, we hope to apply this method to develop a novel synthetic route for the total synthesis of Desbromoarborescidine A and its analogues in this study. According to the newly designed synthetic route, we first accomplished the synthesis of the key intermediates which was then examined for the critical asymmetric catalysis. The asymmetric reduction using the highly efficient organocatalysts, developed in our lab afforded high ee but poor yield. We tried different reaction conditions to improve the yield, but failed to get any good results. Simultaneously, to vertify the feasibility of the synthetic route we designed, we also tired to go through the route toward the racemic synthesis of Desbromoarborescidine A. But unfortunately, protection and deprotection proved to be big hurdles. All the different protection groups and different sequences of protection and deprotection we tried failed to get us through the designed synthetic sequence and furnish the final product. Most likely, the indole part is the culprit behind the failures.The NH group of the indole, no matter protected or not, may impact the catalytic asymmetric reduction of C-N double bond connected with 2-C. Additionally, the reduction product we designed contains an amino group in the β-position of the indole, which may cause problems due to its instability. C-sulfenylation of enamines is a novel reaction discovered recently by our group, which has not been seen before in the literature. In this study, optimization of the reaction conditions and exploration of the substrate scope were further undertaken for this reaction, which reveal that a series of enamines with N-Cbz, Ac, COt-Bu, CO2Et protection groups could all undergo smooth C-sulfinylations with the comined use of sodium benzene sulphinate, DAMc and MeSiCl3, efficiently furnishing the β-amino vinylsulfoxide products in high yield, affording a practical and highly efficient methods for synthesis of functional vinylsulfoxides.
Resumo:
通过单因子和多因子摇瓶正交试验,确定了米曲霉液态发酵产氨基酰化酶的最佳发酵条件。优化发酵培养基组成(ρ/g L-1): 葡萄糖40,蔗糖10,可溶性淀粉20,蛋白胨2.5,马铃薯液1 000mL, pH自然。培养基装量50mL/250mL三角瓶,接种量4%。培养温度30℃,转速100 rmin-1,发酵时间42h。每50mL培养物的总酶活由优化前的2627U提高到7338U,是优化前的2.79倍。 研究了米曲霉氨基酰化酶的部分酶学性质,该酶催化反应的最适pH为7.0,最适温度为40℃,低浓度的Co2+(5×10-4mol/L)对酶活激活作用显著,催化反应过程中,底物浓度大于0.2 mol/L时,存在高浓度底物抑制酶活力现象。 初步探索了包埋法固定化米曲霉氨基酰化酶的载体,在实验的五种载体中,以海藻酸钠为载体包埋固定化米曲霉氨基酰化酶酶活保留率高,且操作简单,成本低廉。对包埋法固定化米曲霉氨基酰化酶酶学性质进行了研究,较游离米曲霉氨基酰化酶,最适温度未发生改变,最适pH向碱性范围偏移至8.0,对酸碱和热的稳定性增强,最适底物浓度增大到0.4 mol/L。 根据氨基酰化酶能立体专一水解L-氨基酰化物的特点,利用米曲霉氨基酰化酶对消旋苯丙氨酸进行了拆分。在米曲霉氨基酰化酶选择性的作用于底物N-乙酰-L-苯丙氨酸,得到L-苯丙氨酸后,通过732阳离子树脂和结晶法分别将L-苯丙氨酸和N-乙酰-D-苯丙氨酸分离,N-乙酰-D-苯丙氨酸通过酸水解脱去乙酰基得到D-苯丙氨酸,拆分得到光学纯度为98%的L-苯丙氨酸(收率84.8%)和光学纯度为92.3%的D-苯丙氨酸(收率89.5%)。 separate factors tests and orthogonal experiments,the optimum fermentation conditions of aminoacylase –producing Aspergillus oryzae were determined, as follows(ρ/g L-1),glucose 40,sucrose 10,soluble starch 20,peptone 2.5,potato juice 1000ml, inoculation volume 4%and fermentation temperature 30℃,rotation speed 100rmin-1.The highest total enzyme activity ,7338μ,was obtained after fermentation for 42 h, increased by 279% compared with the original value of 2627μbefore optimization. We dicussed partial characteristics of aminoacylase. The optimal pH and temperature of aminoacylase were 7.0 and 40℃ respectively. Low- concentration Co2+ (5×10-4mol/L)activated the aminoacylase remarkably while high-concentration substrate lowered the aminoacylase . Five vectors has been used for immobolizing the enzyme and calcium alginate showed to be the best one for it had the slightest influence on the enzyme activity, easy to operate ,and low in price, comparing with other fours. The enzymatic charateristic study showed that its optimum temperature didn’t change, but the optimum pH and substrat concentration were higher after immobilization. The stability of immobolized enzyme to acid, alkaline and heat rised as well. The aminoacylse from Aspergillus oryzae was used to resolute racemic phenylalanine to obtain D-phenylalanine. After catalyzing process, we took two methods to separate D-phenylalanine .In end,L-phenylalanine was obtained with 98% optical purity in 84.8% yield, D-phenylalanine was obtained with 92.3% optical purity in 89.5% yield.
Resumo:
Gelatin multilayers were assembled on PLLA substrate at pH 3, 5, and 7, which was below, around, and above the isoelectric point of the amphoteric polymer, using the layer-by-layer assembly technique. The multilayer deposition on the PLLA substrate was monitored by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. The XPS, water contact angle, and atomic force microscopy data indicated that the layer thickness, surface hydrophicity, and surface morphology of the gelatin multilayers assembled strongly depended on the pH at which the layers were deposited
Resumo:
A new biodegradable amphiphilic block copolymer, poly(ethylene glycol)-b-poly(L-factide-co-9-phenyl-2,4,8, 10-tetraoxaspiro[5,5]undecan-3-one) [PEG-b-P(LA-co-PTO)], was successfully prepared by ring-opening polymerization (ROP) Of L-lactide (LA) and functionalized carbonate monomer 9-phenyl-2,4,8,10-tetraozaspiro[5,5]undecan-3-one (PTO) in the presence of monohydroxyl poly(ethylene glycol) as macroinitiator using Sn(Oct)(2) as catalyst. NMR, FT-IR, and GPC studies confirmed the copolymer structure.
Resumo:
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly(L-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%.