89 resultados para Population Genetic Structure
Resumo:
沙蜥属(Phrynocephalus)的卵胎生类群主要分布在我国青藏高原,包括南疆沙蜥(P. forsythii)、西藏沙蜥(P. theobaldi)、红尾沙蜥(P. erythrurus)、贵德沙蜥(P. putjatia)和青海沙蜥(P. vlangalii)。其卵胎生生殖方式适应了高寒生境,与青藏高原隆升有关。纵观前人的研究,上述几种卵胎生沙蜥的分类、系统发育关系以及生物地理都还存在疑问。本文研究了分布在若尔盖湿地的青海沙蜥红原亚种(P. v hongyuanensis)以及分布在黄河上游其它地区青海沙蜥种组的地理分布格局,并探讨了其形成机制。 青海沙蜥在黄河上游主要分布于若尔盖湿地以及青海湖周边地区。若尔盖湿地青海沙蜥红原亚种的生境由于沼泽的形成被切割成不连续的斑块,通过遗传分析可以推测这种特殊生境对它们遗传结构的影响。其次,贵德沙蜥、青海沙蜥的青海湖周边各居群以及若尔盖湿地居群之间的系统地理格局还未见报道。因此本文以居群为单位,将它们作为一个复合体,通过系统地理研究,可以了解其种群遗传结构,据此分析相关的地质历史事件对其分布的影响。主要结果如下: 1. 若尔盖湿地青海沙蜥红原亚种的种群遗传结构: 共研究了三个地理单元(红原(HY)、辖曼(XM)、玛曲(MQ))的7个采集点的72个个体。所有ND4-tRNALeu序列比对得到785 bp的片断,定义了9种单倍型。结果显示总的核苷酸多样性较低,单倍型多样性较高。分子变异分析(AMOVA)显示3个单元间差异显著(P<0.01),遗传变异主要存在于地理单元间,占62.61%。除MQ单元,XM各居群与HY居群混杂在一起,单倍型网络图没有显示出单倍型和地理位置的对应关系。XM单元单倍型的不配对分布(Mismatch distribution)为明显左移的单峰,且Fu’s Fs test为负值,表明XM单元可能经历了近期种群扩张,有足够的时间积累单倍型的多态性,还不足以大幅提高核苷酸多样性,这是其单倍型多样性较高和核苷酸多样性较低的原因。MQ单元遗传多样性低而与其他单元显著分化,推测这与3万年前黄河在若尔盖玛曲之间贯通有关。近期沼泽的形成对XMb居群的隔离时间短,使得其遗传多样性低但还不足以形成大的遗传差异。无论黄河的贯通还是沼泽的形成其隔离形成的时间都不长,其作用改变了单倍型出现的频率,也出现了一些特有单倍型,但共享单倍型还广泛存在,还不足以使得不同居群之间形成较大的遗传距离。 2. 黄河上游青海沙蜥种组的分布格局与地史过程的关系: 黄河上游青海沙蜥种组包括贵德沙蜥、青海沙蜥指名亚种的青海湖周边各居群、青海沙蜥红原亚种若尔盖湿地居群、以及青海湖以西的部分居群(序列由Genbank下载获得),总计22个居群189个样品。所有ND4-tRNALeu序列比对得到703个位点,定义了39种单倍型。以南疆沙蜥为外群构建的贝叶斯树以及MP法构建的无根树,都分为A、B两大组。其中A包括若尔盖湿地居群以及玛多居群(A1)、青海湖以西的居群和兴海居群(A2)、西藏沙蜥;B包括青海湖以南的居群和天祝居群(B1)、青海湖以东北的居群(B2)。单倍型网络图分别对应了系统发育树上的各支。按照系统发育结果分组进行分子变异分析,得到组间变异占88.63%,各组间差异显著(P=0.000)。种群遗传结构分析得到,A1和B2可能经历了近期的种群扩张,前者扩张时间约为0.105-0.189 Ma B.P.(million years before present),后者为0.057-0.102 Ma B.P.,可能与末次间冰期的气候变暖有关。A2和B1对应的两个地理单元都具有较强的种群遗传结构,较为稳定。 青海沙蜥种组A、B两大支之间遗传距离大,分化明显,分化大约发生在4.29-2.38 Ma B.P.,推测青藏运动的A幕运动后复杂的地形变化可能是它们产生分化的原因。B1和B2分化大约发生在1.73-0.96 Ma B.P.,这与湟水流域构造运动发生的时间相符。在早、中更新世时期,B1支内部各居群可能有交流,中更新世末共和盆地出现的抬升以及河流溯源改道等事件可能是引起这支内部多个单倍型丢失的原因。A1、A2支的分化可能与倒数第三次冰期降临之后气候变冷、阿尼玛卿山的大冰帽有关。 The viviparous group of genus Phrynocephalus is mainly distributed in the Qinghai –Tibetan Plateau, including P. forsythii、P. theobaldi、P. erythrurus、P. putjatia and P. vlangalii. These species are adapted well to the cold clime there, and the origin of this group was the result of a vicariance event associated with the uplifting of the Qinghai -Tibetan Plateau. Although many works have been done, there are still several questions about classification、phylogenetic relationships and the biogeography of this group. The phylogeographic pattern of the P. vlangalii complex on the upper reaches of the Yellow River and the P. v. hongyuanensis in Zoige Wetland were studied in this thesis. On the upper reaches of the Yellow River, P. vlangalii complex are distributed in Zoige Wetland and the southeast and northeast region of Kuku-noor Lake. Because of the forming of the wetland in Zoige, the habitats for sand lizards are divided into many discontinuous ones, and it is necessary to analyze genetic structure in these unique habitats. The phylogeographic patter among P. putjatia、populations of P. vlangalii in the southeast region of Kuku-noor Lake and populations of P. vlangalii in Zoige Wetland hasn’t been studied yet, and the complicated geological events of the Plateau may play an important role in the populations’ diversity and species forming there. So these populations were gathered as a complex, and phylogeographic analysis were used to clarify these doubts. According to the two topics above, this thesis has two parts of results as follows: 1. Three geographic units of P. vlangalii hongyuanensis in Zoige Wetland were defined, and they were Xiaman (XM)、Hongyuan (HY) and Maqu (MQ). 785bp fragments of the mtDNA ND4-tRNAleu were determined from 72 samples and nine haplotypes were identified. As a whole, the nucleotide diversity was low,but the haplotype diversity was high. Analysis of molecular variance (AMOVA) showed that the three units were distinctly different(P<0.01),and 62.61% of the total genetic diversity was attributable to variation among units. There were 3 haplotypes shared among XM and HY,and no geographic clustering was observed except MQ from the TCS network. The results from the mismatch distribution analysis and Fu’s Fs test implied that there might be a recent population expansion in the XM unit, and this may be the reason why XM had a high haplotype diversity but a low nucleotide diversity. We estimate that the MQ and XMb have lower diversities because of some very recent geographic events, such as the formation of the Yellow river’s upriver and the Zoige Wetland. Although they are distinctly different, not enough time has passed for them to have diverged a great genetic distance. 2. 189 samples in 22 populations of P. vlangalii complex were collected, including P. putjatia、populations of P. vlangalii in the southeast and northeast region of Kuku-noor Lake、 populations of P. vlangalii in Zoige Wetland and the data from Genbank. 703bp ND4-tRNALeu sequences identified 39 haplotypes. P. forsythii was selected as outgroup, and both the Bayesian tree and the MP unrooted tree were divided into two groups(A、B). A included populations in Zoige Wetland and Xinghai(A1)、populations in the west of Kuku-noor Lake(A2)、P. theobaldi, and B included populations in the southeast of Kuku-noor Lake and Tianzhu(B1)、populations in the northeast of Kuku-noor Lake(B2). The haplotype network agreed with these groups. AMOVA showed that these five groups were distinctly different(P<0.01), and 88.63% of the total genetic diversity was attributable to variation among groups. There might be recent population expansion in A1 and A2, which corresponded to the dry climate of the last interglacial period. The expansion times were 0.189-0.105 Ma B.P. and 0.102-0.057 Ma B.P., respectively. A2 and B1 had strong genetic structure. The large genetic distance between A and B showed that they had been separated from each other for a long time(about 4.29-2.38 Ma B.P.), and it corresponded to the A phase of Qingzang Movement. The diversity between B1 and B2 at 1.73-0.96 Ma B.P. may be caused by the geological event in Huangshui valley. In early Pleistocene, populations in B1 may have gene flow because of geographic linkage, and later the uplift of the Plateau and the change of river route there made a few haplotypes lost. A1 and A2 were divided into two parts by A’nyemaqen Mountains at 0.66-0.37 Ma B.P., which maybe corresponded to glaciations at about 0.7 Ma B.P.
Resumo:
大熊猫(Ailuropoda melanoleuca)是我国特有的濒危野生动物之一,迁地保护已经成为大熊猫物种保护的一个重要方面。当前大熊猫圈养种群数量增长很快,但是其“多雄配一雌”的交配(配种方式),以及生产过程中记录遗失等原因,造成圈养种群普遍存在亲子关系不清、谱系混乱等问题。为了加强遗传管理,有必要进行亲子关系鉴定、完善谱系;还需要检测种群的基因多样性水平,并在此基础上提出相应的遗传管理建议。 本研究应用9个具有高度多态性的大熊猫微卫星标记,对来自成都大熊猫繁育研究基地2006和2007年度出生的17只大熊猫幼崽及其全部候选父母共37个样品做了基因型分析;然后应用最大似然法,判断幼崽的父-子关系。同时,还对来自卧龙大熊猫保护研究中心的31只大熊猫个体也做了基因分型。将两个种群的数据进行比较:1)等位基因多样性和杂合度水平;2)通过F统计法,分析两个种群的遗传分化水平;3)通过遗传距离法,对所有个体进行聚类分析。 研究结果表明: 1)在母子关系不清的情况下,9个微卫星标记联合的父亲鉴定排除概率E为0.940090;而在母子关系确实的条件下,E= 0.993933。由于本研究中所有后代的母亲都是清楚的,因此这9个微卫星位点能够有效用于圈养大熊猫的亲子鉴定。似然法分析也表明,本研究所获得的亲子鉴定结果置信度在95%以上。 2)2005年种源交换后,成都大熊猫的等位基因多样性和杂合度水平都略高于卧龙种群(但没有达到显著水平),两个种群间的遗传分化水平也有所降低。但是,与卧龙相比,成都种群面临较大的近交压力。 基于以上研究结果,我们建议:进一步加强种源交换和基因交流,把两个种群当作一个遗传单元(MU)来进行管理。 Giant panda (Ailuropoda melanoleuca) is one of the endangerd wildlife endemic to China, and the ex-situ breeding become more and more important for the conservation of this speices. Although the captive population is expanding rapidly, the uncertainty occurs because the paternities of cubs are not clear due to the breeding pattern of “multiple male to single female,”as well as the records lost, resulting in errors in the studbook. For this reason, the paternity of the cubs and the genetic diversity of the captive giant pandas should be tested carefully to get information for the genetic management in the future. 9 polymorphism microsatellite markers were used to do paternity assignment for the 17 cubs born in 2006 and 2007 from Chengdu Research Base for Giant Panda Breeding (CGB) based on the maximum-likelihood methods. A total of 37 individuals were sampled, including all the candidate dams and sires. These samples were also used for comparing with 31 individuals sampling from Wolong China Research and Conservation Center for the Giant Panda (WCG). The comparing indexes were: 1) Allelic diversity and heterozygosity; 2) Genetic differentiation based on F-statistic; 3) Cluster analysis based on genetic distance. The results show that: 1) If the mother is unkown, the combined exclusion probability using these 9 loci is 0.940090. If the mother is known then the exclusion probability is 0.993933. Since the dam-offspring relationship is known in captive populations, the results could resolve unknown paternities in the study. And the confidence level of the results is 95% based on the likelihood methods. 2) The allelic diversity and the heterozygosity of CGB were higher than WCG (n ot significant), and the genetic differentiation was reduced a little since the genetic exchange between two populations in 2005. However, the population of CGB will be threatening by inbreeding seriously than that of WCG. From above, we suggest to reiforce the genetic exchange and geneflow between CGB and WCG, and these two populations should be regarded as one genetic management unit (MU).
Resumo:
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.
Resumo:
ISSR analysis was used to investigate genetic variations of 184 haploid and diploid samples from nine North Atlantic Chondrus crispus Stackhouse populations and one outgroup Yellow Sea Chondrus ocellatus Holmes population. Twenty-two of 50 primers were selected and 163 loci were scored for genetic diversity analysis. Genetic diversity varied among populations, percentage of polymorphic bands (PPB) ranged from 27.0 to 55.8%, H(Nei's genetic diversity) ranged from 0.11 to 0.20 and I(Shannon's information index) ranged from 0.16 to 0.30. Estimators PPB, H and I had similar values in intra-population genetic diversity, regardless of calculation methods. Analysis of molecular variance (AMOVA) apportioned inter-population and intra-population variations for C crispus, showing more genetic variance (56.5%) occurred in intra-population, and 43.5% variation among nine populations. The Mantel test suggested that genetic differentiation between nine C. crispus populations was closely related with geographic distances (R = 0.78, P = 0.002). Results suggest that, on larger distance scale (ca. > 1000 km), ISSR analysis is useful for determining genetic differentiations of C crispus populations including morphologically inseparable haploid and diploid individuals. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Hippophae rhamnoides ssp. sinensis occurs mainly in the and regions of northwest China. The wood stands of this subspecies play an important role in maintaining the local ecosystems in these regions. In addition, the genetic characteristics are essential to understand the historical range changes of this subspecies and its morphological differentiation with other subspecies. In this study, we developed nine microsatellite loci for this subspecies for the first time. We used the combining biotin capture method to enrich AG/CT/AC/GT/CG/GTG/CCA microsatellites. Twenty-six microsatellites were isolated from the enriching library and nine of them were found to be polymorphic through screening 12 distantly distributed individuals. The number of alleles per locus ranged from three to twelve and expected heterozygosity from 0.2659 to 0.4767, respectively. We further performed cross-priming tests in another subspecies and two congeneric species. These firstly isolated loci will provide a useful tool to investigate the genetic structure of this subspecies and its morphological differentiation from the other subspecies.
Resumo:
青藏高原地区是我国植物物种多样性和特有性最高的地区,且作为东亚植物区系的一个现代分化中心受世人瞩目。长花马先蒿是青藏高原高山草甸的广布种,其地理分布格局的形成与高原的隆升和气候变迁有着密切关系。因此,对长花马先蒿进行谱系生物地理学研究,有助于探讨青藏高原地区物种快速分化的机制和群体建立过程。 本研究对长花马先蒿11个居群、188个个体的叶绿体DNA trnT-trnF区进行了序列分析,发现该片段的长度变异范围为1441-1472bp。对位排列后的矩阵(含外类群)长1534bp,内类群中含33个碱基替换和 17 个插入/缺失,可分为20种单倍型。11个地理居群的总核苷酸多态性(π)为0.00468,单倍型多态性(Hd)为0.853,居群间的遗传变异(FST)高达88.2%,说明长花马先蒿具有很高的遗传多样性,且居群间发生了强烈遗传分化。 系统发育和遗传多样性分析发现长花马先蒿的20种叶绿体单倍型可归于四个地理单元——川西高海拔地区、川北地区、云南德钦地区及川藏地区。进一步分析发现:4个地理单元间存在着显著的遗传分化, 说明长花马先蒿具有明显的谱系地理分布格局。其中川西高海拔地区的四种主导单倍型构成了系统发育树最基部的一支,而以川西地区为中心、向南扩展至云南的两个居群所包含的几种单倍型均属于比较进化的类型。单倍型的网络关系(Network) 显示出西藏、青海、云南及四川北部的一些单倍型间遗传差异很小,亲缘关系很近。上述结果表明:长花马先蒿群体在冰期后的重新扩张过程主要表现为由南往北的递进式扩散,第四纪冰期气候的反复波动导致了该物种居群随生境变化而不断扩张或收缩,形成了现今的分布格局。初步推测川西地区很可能曾是长花马先蒿在第四纪冰期时的重要避难所,瓶颈效应和奠基者效应对其遗传多样性分布格局有重要影响。
Resumo:
中国是受沙漠化影响最严重的国家之一。梭梭(Haloxylon ammodendronBunge)是藜科梭梭属多年生小乔木或灌木,作为荒漠地区主要的建群种和优良固沙植物,梭梭在维持荒漠生态系统的结构与功能、防止土地沙漠化、改善小气候方面具有十分重要的作用。近年来,由于不合理地开发利用,大面积的天然梭梭林衰退甚至死亡。然而,我们对于梭梭种群的空间分布和遗传结构所知甚少。本文拟通过对自然梭梭种群的空间格局、遗传结构、遗传结构的空间分布、以及种子种群与地面植被种群的遗传比较的研究,探讨种群的空间结构特征及成因,评价种群遗传多样性水平,了解遗传多样性在种群内、种群间的分布情况以及在空间上的分布格局,预测种群的遗传潜能,并为制定合理的保护、利用策略提供理论依据。 1.对古尔班通古特沙漠东南部地区处于不同演替阶段的四个梭梭种群的分布格局和种群动态进行了考察。结果表明,不同样地中梭梭种群的幼苗(<0.5m)和幼树( 0,5-lm)均呈聚集分布,样地A、B、D中的成熟个体(>1m)也呈聚集分布,样地c中的成熟个体呈随机分布,从整个种群来看,所有梭梭种群均呈聚集分布。种群的龄级结构图表明样地A和c中的梭梭种群表现为稳定型结构,可进行持续更新,虽然样地D中的种群幼苗和幼树数量较少,但这种现象是暂时的,种群仍具有持续更新的能力,样地B中的种群表现为衰退型结构。 2.利用空间自相关分析检测上述四个种群的空间遗传结构,结果表明,四个种群中的成株均无显著的空间自相关。虽然梭梭的种子散布能力有限,但花粉流有可能是空间遗传结构不显著的原因之一;另一个可能的解释是在种群更新和发展过程中,由于种内竞争的增强而发生了自疏现象。 3.利用ISSR标记对新疆和内蒙古境内共9个种群的遗传结构进行研究。8个引物共扩增出219条带,其中184条(84%)具多态性,种群的遗传多样性水平较高,通过AMOVA分析表明大部分遗传多样性分布在种群内,区域间、种群间的遗传变异均很小。梭梭种群较高的遗传多样性水平可能源于对异质、高胁迫环境的长期适应,而种群间遗传分异低的主要原因是种群间存在强大的基因流。 4.对5个梭梭种群的地面植被和种子库的遗传结构进行了比较分析,并调查了其中3个种群地面植被和种子库的空间遗传结构。结果表明,在所有种群中,地面植被和种子库的遗传多样性水平相似,而地面植被的遗传分异高于种子库的遗传分异:二者在遗传结构的空间分布上也不相同,地面植被种群无显著的空间自相关,而种子库种群在第一距离级上( 0-10 m)呈显著正相关。研究结果表明梭梭种群的种子库有能力保持种群的遗传多样性并减弱种群的遗传分化。 5.研究结果建议,由于现存梭梭种群和其潜在种群(种子种群)仍保持了较高的遗传多样性,种群间的基因交换并没有受到阻碍,因此对梭梭的保护可以与生态恢复工作同时进行。在具体工作中,应充分考虑种群的遗传结构特征及其空间格局,选取适合的种群或种子资源进行恢复与重建,并保持一定水平的种群大小,才能实现种群的稳定发展以及在高胁迫环境中的长期存活。 荒漠生态系统植被结构简单,环境压力大,对荒漠地区主要建群种和优势种植物的空间分布和遗传结构进行研究对于探讨在胁迫环境中各种进化力量(如选择、突变、迁移、漂变)的作用机制有重要意义,并为荒漠生态系统的恢复与重建工作提供了有价值的信息。在本文中,对荒漠植物在较大地理范围内的遗传结构研究、通过空间自相关分析进行种群的空间遗传结构研究、地面植被种群与种子库种群在遗传结构、空间遗传结构上的比较研究在国内均为首例。这些研究结果为进一步深入探讨荒漠植物生态适应与进化的分子机制奠定了基础。
Resumo:
采用位置指数、分异指数、结构复杂性指数、Shannon-Wiener多样性指数以及Ripley的K-方程,探讨了华南海岸英罗港红树植物木榄种群的分布格局、胸围和树高分异以及冠层结构方面的空间异质性。结果表明,多数木榄种群呈现随机分布,其个体胸围和树高的分异程度较低;而少数木榄种群呈现集群分布,其个体胸围和树高的分异程度明显。采用地理信息系统对木榄种群冠层和空隙斑块进行多种水平和垂直尺度的分析,冠层与空隙斑块之间的镶嵌格局因种群而异,这种格局可基于树冠投影用Shannon-Wiener多样性指数进行定量描述。冠层结构的空问异质性随空间尺度而变化,但这种变化在一定尺度范围内保持相对的稳定。这一尺度范围可作为木榄红树林更新或生态管理单位的参考尺度。 采用多重分形理论和方法对华南海岸北海红树林区红树植物白骨壤幼苗种群的分布格局进行了分析。结果表明,白骨壤幼苗种群的分布格局具有多标量和多重分形行为。随着q值由-2增加到4,Dq值介于1.078-1.997,f(a)值介于0.402-1.678,a(q)值介于0.909-2.480。多重分形的参数值与幼苗种群的集聚强度密切相关。差值(D。-D1)和[f(-1) –D]。是度量格局空间异质性程度的有效指数。海洋水文周期性规律、不同面积大小的裸地、树冠的阻拦作用等是制约白骨壤幼苗种群多重分形格局形成的主要因子。 采用地统计学理论和方法,对北京东灵山落叶松和胡桃楸针阔混交林下的克隆植物绢毛匍匐委陵菜分株种群的统计变量和土壤变量的空间格局进行了分析和比较。结果表明,绢毛匍匐委陵菜分株种群各器官生物量以及分株数和叶数的空间格局具有较高程度的异质性。总生物量以及茎、叶和根生物量的半方差函数曲线为指数模型,叶柄生物量、分株数和叶数的为球状模型,叶片生物量的为线性无基台值模型,而匍匐茎生物量的为纯块金效应模型。除叶片和匍匐茎的生物量外,其它器官生物量以及分株数和叶数由空间自相关引起的空间异质性.SHA主要表现在120-3 50cm的尺度范围内,SHA占总空间异质性的比例在50%以上。生境中,各种土壤变量的空间格局也具有较高程度的异质性。土壤含水量、NO3-、NH4+、有机质、全磷和PO4(3-)的半方差函数曲线为球状模型,而全氮、K+和pH的为指数模型。土壤变量由空间自相关引起的空间异质性SHA主要表现在8-lOOcm的尺度范围内,SHA占总空间异质性的比例在68%以上。绢毛匍匐委陵菜分株种群空间格局的自相关尺度显著大于其生境中土壤变量空间格局的自相关尺度,表明绢毛匍匐委陵菜通过匍匐茎相互联结的克隆分株种群对异质性土壤资源表现出较大的缓冲能力。绢毛匍匐委陵菜分株数的空间格局与土壤的含水量和全氮空间格局之间在几乎所有尺度上的相关性都不显著,但与其它土壤变量空间格局之间都存在不同程度的相关性,其中与NH4+、pH、PO4(3-)和全磷空间格局之间的相关性尺度范围较为明显和较大。通过分株数、叶数和生物量分配的可塑性变化,绢毛匍匐委陵菜分株种群的空间格局与土壤资源的空间格局之间产生相互联系,并随空间尺度的变化会发生改变。
Resumo:
The retrieval of DNA from ancient human specimens is not always successful owing to DNA deterioration and contamination although it is vital to provide new insights into the genetic structure of ancient people and to reconstruct the past history. Normally, only short DNA fragments can be retrieved from the ancient specimens. How to identify the authenticity of DNA obtained and to uncover the information it contained are difficult. We employed the ancient mtDNAs reported from Central Asia (including Xinjiang, China) as an example to discern potentially extraneous DNA contamination based on the updated mtDNA phylogeny derived from mtDNA control region, coding region, as well as complete sequence information. Our results demonstrated that many mtDNAs reported are more or less problematic. Starting from a reliable mtDNA phylogeney and combining the available modern data into analysis, one can ascertain the authenticity of the ancient DNA, distinguish the potential errors in a data set, and efficiently decipher the meager information it harbored. The reappraisal of the mtDNAs with the age of more than 2000 years from Central Asia gave support to the suggestion of extensively (pre)historical gene admixture in this region.
Resumo:
Previous study using protein electrophoresis shows no polymorphism in 44 nuclear loci of Sichuan golden monkey (Rhinopithecus roxellana), which limits our understandings of its population genetic patterns in the nuclear genome. In order to obtain sufficient information, we scanned 14 microsatellite loci in a sample of 32 individuals from its three major habitats (Minshan, Qinling and Shennongiia). A considerable amount of polymorphisms were detected. The average heterozygosities in the local populations were all above 0.5. The differentiations among local populations were significant. There was evidence of geneflow among subpopullations, but geneflow between Qinling and Shennongjia local populations was the weakest. Minshan and Qinling populations might have gone through recent bottlenecks. The estimation of the ratio of the effective population sizes among local populations was close to that from census sizes. Comparisons to available mitochondria data suggested that R. roxellana's social structures played an important role in shaping its population genetic patterns. Our study showed that the polymorphism level of R. roxellana was no higher than other endangered species; therefore, measures should be taken to preserve genetic diversity of this species.
Resumo:
Background: China, with around 30 unique breeds, has a diverse duck genetic pool. Currently, there is no systematic report which investigates the genetic diversity, phylogenetic relationship, and matrilineal genetic structure of these domestic breeds and
Resumo:
Schizothorax o'connori is endemic to the Yarlung Tsangpo River on the Tibetan Plateau. We assessed the relative impacts of historical and contemporary factors in organizing genetic variation in S. o'connori populations using mitochondrial cytochrome b sequences. We analyzed 191 samples from 11 populations and identified 78 haplotypes. The phylogenetic analyses and analysis of molecular variance all supported the same conclusions of two well-differentiated east-west phylogroups, separated by the Tsangpo Great Gorge. The split between the two clades accounted for 58% of the genetic variance observed among the examined samples. Waterfalls as effective barriers played an important role in shaping the phylogeographical structure of this species. Analyses of migration rates revealed that upstream dispersal was limited crossing waterfalls. Our study revealed substantial spatial and temporal variation in the influence of landscape features on contemporary patterns of genetic structure in S. o'connori. Interglacial range expansions clearly left their mark on contemporary populations above the Tsangpo Great Gorge.
Resumo:
We investigated the age and growth of Schizothorax o'connori in the Yarlung Tsangpo River by examination of annuli from otoliths. The von Bertalanffy model was the most acceptable statistical growth model. Its parameters were as follows: SL infinity = 492.4 mm, K = 0.1133, t(0) = -0.5432 year and W-infinity = 1748.9 g for females; SL infinity = 449.0 mm, K = 0.1260, t(0) = -0.4746 year and W-infinity = 1287.0 g for males. Theoretical longevity was 25.9 years for the female and 23.3 years for the male. Moreover, females had larger asymptotic length and weight compared with males.
Resumo:
Expressed sequence tags (ESTs) are a source for microsatellite development. In the present study, EST-derived microsatelltes (EST-SSRs) were generated and characterized in the common carp (Cyprinus carpio) by data mining from updated public EST databases and by subsequent testing for polymorphism. About 5.5% (555) of 10,088 ESTs contain repeat motifs of various types and lengths with CA being the most abundant dinucleotide one. Out of the 60 EST-SSRs for which PCR primers were designed, 25 loci showed polymorphism in a common carp population with the alleles per locus ranging from 3 to 17 (mean 7). The observed (H-O) and expected (HE) heterozygosities of these EST-SSRs were 0.13-1.00 and 0.12-0.91, respectively. Six EST-SSR loci significantly deviated from the Hardy-Weinberg equilibrium (HWE) expectation, and the remaining 19 loci were in HWE. Of the 60 primer sets, the rates of polymorphic EST-SSRs were 42% in common carp, 17% in crucian carp (Carassius auratus), and 5% in silver carp (Hypophthalmichthys molitrix), respectively. These new EST-SSR markers would provide sufficient polymorphism for population genetic studies and genome mapping of the common carp and its closely related fishes. (c) 2007 Published by Elsevier B.V.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.