142 resultados para Polystyrene Sphere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional polystyrene, (Cl-PS)(2)-CHCOOCH2CH2OH ( designated as XPSt and coded P2) was prepared by ATRP at 130(0)C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4' phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)(2)-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability ( TGA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new initiator for atom transfer radical polymerization (ATRP), (Cl2HCCOOCH2)(4)C(TDCAP) was designed and successfully synthesized. The initiator was,used to initiate,the polymerization of styrene via ATRP to method yield an eight-arm polystyrene with functional end-group chlorides. The different polymers could be prepared via ATRP of different monomers at 130 degrees C using TDCAP/CuCl/bPy as the initiating system. The initiator and eight-armed polymer were characterized by means of H-1 NMR, FTIR and GPC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By addition of a small amount of poly(methyl methacrylate) (PMMA) into polystyrene (PS), we present a novel approach to inhibit the dewetting process of thin PS film through phase separation of the off-critical polymer mixture (PS/PMMA). Owing to the preferential segregation of PMMA to the solid SiOx substrate, a nanometer thick layer, rich in PMMA phase, is formed. It is this diffusive PMMA-rich phase layer near the substrate that alters the dewetting behavior of the PS film. The degree of inhibition of dewetting depends on the concentration and molecular weight of PMMA component. PMMA with low (15.9k) and intermediate (102.7k) molecular weight stabilizes the films more effectively than that with a higher molecular weight (387k).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of polyamide-6 (PA6) with syndiotactic polystyrene (sPS) were prepared using a series of styrene/glycidyl methacrylate (SG) copolymers as compatibilizers. These copolymers are miscible with sPS, and the epoxide units in SG are capable of reacting with PA6 end groups. These copolymers thus have the potential to form SG-g-PA6 graft copolymers at the PA6/sPS interface during melt processing. This study focuses on the effects of functionality and concentration of the compatibilizer on the morphological, mechanical and crystallization behaviors of the blends.. In general, SG copolymers are effective in reducing the sPS domain size and improving the interfacial adhesion. About 5 wt% glycidyl methacrylate (GMA) is the optimum content in SG copolymer that produces the best compatibilization. Both the strength and modulus of the blend have been improved on addition of the SG copolymers, accompanying a loss in toughness when higher concentration copolymer is added. Incorporation of SG compatibilizers to PA6/sPS blend has little influence on the crystallization behavior of PA6 component but resulted in a steady reduction in intensity of crystallinity peak of sPS and simultaneous crystallization of sPS with PA6 is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high-impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel-Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel-Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE-g-PS and LLDPE-g-HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m(2). Scanning electron microscopy micrographs showed that the size of the domains decreased from 4-5 to less than 1 mum, depending on the content of added AlCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is intended to provide a method for the preparation of maleic anhydride grafted syndiotactic polystyrene (sPS-g-MA). In particular, a novel solid reaction method by a radical grafting approach is investigated. The grafting reaction is performed at a solid state, where the syndiotactic polystyrene (sPS) is swollen in solvent at relatively low temperature compared to the conventional melt modification method. The formation of sPS-g-MA is directly confirmed by Fourier transform infrared spectroscopy and by the morphology observation of sPS/polyamide-6 (Nylon6) blends, when sPS-g-MA is used as a reactive compatibilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe2O3 sol with the particle diameter of 3-5 nm was flocculated by the addition of SDS, and the flocculate formed was redispersed by the further addition of that surfactant. Thus the surfactant bilayer was formed on the surface of Fe2O3. The emulsion polymerization of styrene (St) adsolubilized oil the surfactant adsorbed bilayer was carried out by initiator potassium persulfate (KPS). The UV-Vis and surface photovoltage spectra (SPS) indicate that the Fe2O3 particles were encapsulated in polystyrene(PSt) successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of the isothermal and nonisothermal melt kinetics for syndiotactic polystyrene have been performed with differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The regime II-->III transition, at a crystallization temperature of 239degrees, is found. The values of the nucleation parameter K-g for regimes II and III are estimated. The lateral-surface free energy, sigma = 3.24 erg cm(-2), the fold-surface free energy, sigma(e) = 52.3 +/- 4.2 erg cm(-2), and the average work of chain folding, q = 4.49 +/- 0.38 kcal/mol, are determined with the (040) plane assumed to be the growth plane. The observed crystallization characteristics of syndiotactic polystyrene are compared with those of isotactic polystyrene. The activation energies of isothermal and nonisothermal melt crystallization are determined to be DeltaE = -830.7 kJ/mol and DeltaE = -315.9 kJ/mol, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three triblock copolymers of poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weights and one diblock copolymer of poly[styrene-b-(ethylene-co-butylene)] (SEB) were used to compatibilize high density polyethylene/syndiotactic polystyrene (HDPE/sPS, 80/20) blend. Morphology observation showed that phase size of the dispersed sPS particles was significantly reduced on addition of all the four copolymers and the interfacial adhesion between the two phases was dramatically enhanced. Tensile strength of the blends increased at lower copolymer content but decreased with increasing copolymer content. The elongation at break of the blends improved and sharply increased with increments of the copolymers. Drop in modulus of the blend was observed on addition of the rubbery copolymers. The mechanical performance of the modified blends is strikingly dependent not only on the interfacial activity of the copolymers but also on the mechanical properties of the copolymers, particularly at the high copolymer concentration. Addition of compatibilizers to HDPE/sPS blend resulted in a significant reduction in crystallinity of both HDPE and sPS. Measurements of Vicat softening temperature of the HDPE/sPS blends show that heat resistance of HDPE is greatly improved upon incorporation of 20 wt% sPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core-shell Y2O3:Eu3+/polystyrene particles was prepared by surface modification with citric acid and emulsion polymerization method of styrene. The DTA curve of coated particles exhibits a small and wide exothermic peak of organic compound around 387 degreesC. The carbonyl stretching vibration band was shifted to low wavenumber in FTIR spectrum and the binding energy of Y3d5/2 was shifted to high-energy band in XPS spectrum. The results of FTIR and XPS show that citric acid was coupled to the particles surface. The hydrophilic surface became amphiphilic by modification of citric acid. So styrene could adsorb on particles surface to form emulsion structure which inorganic core was inside. EDS spectra show that Y2O3:Eu3+ particles were coated uniformly with polystyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single chain polystyrene particles were obtained by dilute solution casting method. The sample with both single chain polystyrene particles and multi-chain (more than 1000 molecular chains) polystyrene particles was obtained by a little more concentrate solution. Force modulation technique showed that single chain polystyrene particles were softer than multichain polystyrene particles. On the other hand, nanoindentation experiments on multi-chain particles and bulk polystyrene manifested that the elastic modulus of multi-chain polystyrene particles was very close to that of bulk polystyrene. Therefore, it was concluded that single chain polystyrene particles were softer than bulk polystyrene,which indicated that the density of intrachain entanglement points in the single chain polystyrene particles was not as large as that of the interchain entanglement points in the bulk state.