255 resultados para Polymer matrices
Resumo:
The transfer-matrix method widely used in the calculation of the band structure of semiconductor quantum wells is found to have limitations due to its intrinsic numerical instability. It is pointed out that the numerical instability arises from free-propagating transfer matrices. A new scattering-matrix method is developed for the multiple-band Kane model within the envelope-function approximation. Compared with the transfer-matrix method, the proposed algorithm is found to be more efficient and stable. A four-band Kane model is used to check the validity of the method and the results are found to be in good agreement with earlier calculations.
Resumo:
The high glass transition temperature polymer polyetherketone doped with disperse red 13 (DR13/PEK-c) has been prepared by the spin-coating method. Through in situ second-harmonic generation, the corona poling temperature was optimized by measuring the temperature dependence of the in situ second-harmonic generation signal intensity under the poling electric field. The linear electro-optic coefficients of the poled polymer films have been determined at 632.8 nm by using a simple interferometric technique. The polymer system was measured after 13 000 h, and found that it remained at 80% of its initial value.
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Theoretical Design of Low-loss Single-Polarization Single-Mode Microstructured Polymer optical Fiber
Resumo:
A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.
Resumo:
A novel microstructured polymer optical fiber (MPOF) probe for nitrites (NO(2)(-)) detection was made by forming rhodamine 6G (Rh 6G)-doped cellulose acetate (CA) on the side wall of array holes in a MPOF It was found that the MPOF probe only have a response to nitrites in a certain concentration of sulfuric acid solution The calibration graph of fluorescence intensity versus nitrites concentration was linear in the range of 2.0 x 10(-4) g/ml-5.0 x 10(-3) g/ml. The method possesses case of chemical modification, low cost design, and potential for direct integration with existing instrumentation, and has been applied to the determination of nitrites in real samples with satisfactory results. (C) 2010 Elsevier B.V. All rights reserved
Resumo:
In protein sequence alignment, residue similarity is usually evaluated by substitution matrix, which scores all possible exchanges of one amino acid with another. Several matrices are widely used in sequence alignment, including PAM matrices derived from homologous sequence and BLOSUM matrices derived from aligned segments of BLOCKS. However, most matrices have not addressed the high-order residue-residue interactions that are vital to the bioproperties of protein.With consideration for the inherent correlation in residue triplet, we present a new scoring scheme for sequence alignment. Protein sequence is treated as overlapping and successive 3-residue segments. Two edge residues of a triplet are clustered into hydrophobic or polar categories, respectively. Protein sequence is then rewritten into triplet sequence with 2 · 20 · 2 = 80 alphabets. Using a traditional approach, we construct a new scoring scheme named TLESUMhp (TripLEt SUbstitution Matrices with hydropobic and polar information) for pairwise substitution of triplets, which characterizes the similarity of residue triplets. The applications of this matrix led to marked improvements in multiple sequence alignment and in searching structurally alike residue segments. The reason for the occurrence of the ‘‘twilight zone,’’ i.e., structure explosion of lowidentity sequences, is also discussed.
Resumo:
Surface initiated polymerization (SIP) has become an attractive method for tailoring physical and chemical properties of surfaces for a broad range of applications. Most of those application relied on the merit of a high density coating. In this study we explored a long overlooked field of SIP. SIP from substrates of low initiator density. We combined ellipsometry with AFM to investigate the effect of initiatior density and polymerization time on the morphology of polymer coatings. In addition, we carefully adjusted the nanoscale separation of polymer chains to achieve a balance between nonfouling and immobilization capacities. We further tested the performance of those coating on various biosensors, such as quartz crystal microbalance, surface plasmon resonance, and protein microarrays. The optimized matrices enhanced the performance of those biosensors. This report shall encourage researches to explore new frontiers in SIP that go beyond polymer brushes.
Resumo:
By employing poly(ethylene glycol) (PEG) shielding and a polymer cushion to achieve air stability of the lipid membrane, we have analyzed PEG influence on dried membranes and the interaction with cholesterol. Small unilamellar vesicles (SUVs) formed by the mixture of 1,2-dimyristoylphosphatidylcholine (DMPC) with different molar fraction of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000)) adsorb and fuse into membranes on different polymer-modified silicon dioxide surfaces, including chitosan, poly(L-lysine) (PLL), and hyaluronic acid, Dried membranes arc further examined by ellipsometer and atomic force microscopy (AFM). Only chitosan can support a visible and uniform lipid array. The thickness of dry PEGylated lipid membrane is reduced gradually as the molar fraction of PEG increases. AFM scanning confirms the lipid membrane stacking for vesicles containing low PEG, and only a proper amount of PEG can maintain a single lipid hi lover; however, the air stability of the membrane will be destroyed if overloading. PEG. Cholesterol incorporation can greatly improve the structural stability of lipid membrane, especially for those containing high molar fraction of PEG. Different amounts of cholesterol influence the thickness and surface morphology of dried membrane.
Resumo:
The thermal and flame-retardant properties of homo- and copolyimides were evaluated. Those containing sulfone linkages in the backbone were found to be more flame retardant. Both properties were dependent on the composition. A polyimide/silica nanocomposite was obtained through sol-gel processing. The effects of the addition of silica an the dispersion, interfacial adhesion, fire resistance, mechanical properties, and thermal stability of the composites were investigated. SEM analysis showed a good dispersion of silica with a diameter of 50-300 nm in the organic matrices. The addition of silica increased the fire retardancy and mechanical properties of the composites. (C) 2000 John Wiley & Sons, Inc.