68 resultados para Plant functional groups
Resumo:
Ammonia synthesis over ruthenium catalysts supported on different carbon materials using Ba or K compounds as promoters has been investigated. Ba(NO3)(2), KOH, and KNO3 are used as the promoter or promoter precursor, and activated carbon (AC), activated carbon fiber (ACF). and carbon molecular sieve (CMS) are used as the support. The activity measurement for ammonia synthesis was carried out in a flow micro-reactor under mild conditions: 350-450 degreesC and 3.0 MPa. Results show that KOH promoter was more effective than KNO3. and that Ba(NO3)(2) was the most effective promoter among the three. The roles of promoters can be divided into the electronic modification of ruthenium, the neutralization of surface functional groups on the carbon support and the ruthenium precursor. The catalyst with AC as the support gave the highest ammonia concentration in the effluent among the supports used, while the catalyst with ACF as the support showed the highest turnover-frequency (TOF) value. It seems that the larger particles of Ru on the carbon supports are more active for ammonia synthesis in terms of TOF value. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A Ni-promoted ligand-free palladium catalyst system for Suzuki coupling of aryl bromides has been developed in high efficiency under mild reaction conditions. It was obtained in situ by introducing NiCl2 to PdCl2/PVP using a parallel high-throughput screening technique. A wide range of aryl bromides bearing a variety of functional groups was evaluated.
Resumo:
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulforiating agent in 1, 1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulforiation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by H-1 NMR and H-1-H-1 COSY spectral analyses, which indicates that all the sulforiation reactions exclusively took place at the para-position of the aromatic rings.
Resumo:
New functional copolyether sulfones with pendant aldehyde groups were synthesized by the classical polycondensation reaction between 4,4' -dichlorodiphenyl sulfone (I) and various bisphenols such as 5,5'-methylene bis-salicylaldehyde (II-2), 2,2-bis( 4-hydroxyphenyl)propane (III), and 2,6-bis(4-hydroxybenzylidene)cyclohexanone (IV). Condensation reaction with 4-aminophenol led to pendant phenolic azomethine groups containing copolyether sulfones. The structures of the resulting polymers were confirmed by IR, H-1-NMR spectra, and elemental analyses. The polymers were characterized by reduced viscosity, solubility, thermal stability, DSC, and x-ray diffraction measurements.