89 resultados para Pipe, plastic.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
The MID-K, a new kind of multi-pipe string detection tool is introduced. This tool provides a means of evaluating the condition of in-place pipe string, such as tubing and casino. It is capable of discriminating the defects of the inside and outside, and estimating the thickness of tubing and casing. It is accomplished by means of a low frequency eddy current to detect flaws on the inner surface and a magnetic flux leakage to inspect the full thickness. The measurement principle, the technology and applications are presented in this paper.
Resumo:
A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60A degrees full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.
Resumo:
The present paper aims to develop a robust spherical indentation-based method to extract material plastic properties. For this purpose, a new consideration of-piling-up effect is incorporated into the expanding cavity model; an extensive numerical study on the similarity Solution has also been performed. As a consequence, two semi-theoretical relations between the indentation response and material plastic properties are derived, with which plastic properties of materials can be identified from a single instrumented spherical indentation curve, the advantage being that this approach no longer needs estimations of contact radius with given elastic modulus. Moreover, the inconvenience in using multiple indenters with different tip angles can be avoided. Comprehensive sensitivity analyses show that the present algorithm is reliable. Also, by experimental verification performed oil three typical materials, good agreement of the material properties between those obtained from the reverse algorithm and experimental data is obtained.
Resumo:
Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.
Resumo:
Taking shear-induced dilatation into consideration in shear transformation zone (STZ) operations, we derive a new yield criterion that reflects the pressure sensitivity in plastic flow in metallic glasses (MGs), which agrees well with experiments. Furthermore, an intrinsic theoretical correlation between the pressure sensitivity coefficient and the dilatation factor is revealed. It is found that the pressure sensitivity of plastic flow of MGs originates in the dilatation of microscale STZs.
Resumo:
In this paper, a new definition of SE and CE, which is based on the hexahedron mesh and simpler than Chang's original CE/SE method (the space-time Conservation Element and Solution Element method), is proposed and an improved CE/SE scheme is constructed. Furthermore, the improved CE/SE scheme is extended in order to solve the elastic-plastic flow problems. The hybrid particle level set method is used for tracing the interfaces of materials. Proper boundary conditions are presented in interface tracking. Two high-velocity impact problems are simulated numerically and the computational results are carefully compared with the experimental data, as well as the results from other literature and LS-DYNA software. The comparisons show that the computational scheme developed currently is clear in physical concept, easy to be implemented and high accurate and efficient for the problems considered. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. (C) 2009 Optical Society of America
Resumo:
Ultrasonic solvent extraction combined with solid-phase microextraction (SPME) with calix[4]arene/hydroxy-terminated silicone (C[4]/OHTSO) oil coated fiber was used to extract phthalate acid esters (PAEs) plasticizers in plastic, such as blood bags, transfusion tubing, food packaging bag, and mineral water bottle for analysis by gas chromatography (GC). Both extraction parameters (i.e. extraction time, extraction temperature, ionic strength) and conditions of the thermal desorption in a GC injector were optimized by analysis of eight phthalates. The fiber shows wonderful sensitivity and selectivity to the tested compounds. Owing to its high thermal stability (380 degreesC), the carryover effect that often encountered when using conventional fibers can be reduced by appropriately enhancing the injector temperature. The method showed linear response over two to four orders of magnitude with correlation coefficients (r) better than 0.996, and limits of detection (LOD) ranged between 0.006 and 0.084 mug l(-1). The relative standard deviation values obtained were less than or equal to 10%. bis-2-Ethylhexyl phthalate (DEHP) was the sole analyte detected in these plastics and recoveries were in the ranges 95.5-101.4% in all the samples. (C) 2004 Elsevier B.V. All rights reserved.