352 resultados para Photonic bandgap fiber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr-Coulomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as a result, numerical experiments on concrete under various loading conditions can be conducted. The GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only particle composites as the model did before. Numerical examples are given to show the effectiveness of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture processes are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, lambda is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between lambda and microstructure parameters of composites is obtained. By using lambda, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of tensile and compression tests on a short-glass-fiber-reinforced thermotropic liquid crystalline polymer are presented. The effect of strain rate on the compression stress-strain characteristics has been investigated over a wide range of strain rates epsilon between 10(-4) and 350 s-1. The low-strain-rate tests were conducted using a screw-driven universal tensile tester, while the high-strain-rate tests were carried out using the split Hopkinson pressure bar technique. The compression modulus was shown to vary with log10 (epsilon) in a bilinear manner. The compression modulus is insensitive to strain rate in the low-strain-rate regime (epsilon = 10(-4) - 10(-2) s-1), but it increases more rapidly with epsilon at higher epsilon. The compression strength changes linearly with log10 (epsilon) over the entire strain-rate range. The fracture surfaces were examined by scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interlaminar fracture behaviour of carbon fibre-reinforced bismaleimide (BMI) composites prepared by using a new modified BMI matrix has been investigated by various methods. Laminates of three typical stacking sequences were evaluated. Double cantilever beam, end-notch flexure and edge-delamination tension tests were conducted under conventional conditions and in a scanning electron microscope. The strain energy release rates in Mode I and Mode III G(lc) and G(llc), as well as the total strain energy release rate, G(mc), have been determined and found to be higher than those for laminates with an epoxy matrix. Dynamic delamination propagation was also studied. The toughening mechanisms are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture toughness and fatigue fracture behaviour of carbon-fiber-reinforced modified bismaleimide (BMI) composites have been studied. These composites were found to have higher fracture toughnes, better damage tolerance and longer fatigue life than carbon-fiber composites with epoxy matrices. Delamination is the major mode of failure in fatigue and it is controlled by the properties of the matrix and interface. The improved performance is dire to the presence of thermoplastic particles in the modified BMI matrix which gives rise to enhanced fiber/matrix adhesion and more extensive plastic deformation. The fatigue behaviour also depends on the stacking sequence, with the multidirectional [45/90/-45/0] fiber-reinforced modified BMI composite having a lower crack propagation rate and longer fatigue life than the unidirectional laminate. This arises because of the constraint on the damage processes due to the different fiber orientation in the plies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-microbuckling is a fundamental feature of compressive failure process for the unidirectional-fiber-reinforced composites and laminated composites. The post-microbuckling behavior of composites under compression in the light of the Kevlar49-reinforced 648/BF3.400 (brittle epoxy) and EP (flexible epoxy) is studied, theoretically and experimentally. Analytical results of compressive strength are in good agreement with experimental results, qualitatively and quantitatively. By the experimental research, the post-microbuckling feature of the advancing kink band model is clearly displayed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep behavior of [±45°]s composite material is characterized by using uniaxial creep and recovery tests. The well-known Schapery nonlinear viscoelastic consti tutive relation was modified to make it suitable for characterizing the creep behavior of this material. Then, using this modified Schapery constitutive equation, by which the vis coplastic and creep damage can be taken into consideration, the creep behavior of [±45°]. glass fiber reinforced epoxy laminate was studied. The constitutive parameters of the material were determined experimentally, and the procedure and method of determination of the material parameters are proved to be valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an entanglement purification protocol for photonic mixed entangled states based on the two-mode polarization nondemolition parity detectors. Without the use of the controlled-NOT (CNOT) operations, the efficiency of our protocol can nearly approach that of the CNOT protocol. The total successful probability of our protocol can be nearly enhanced to the quantity twice as large as that of the linear-optics-based protocol. Besides, our protocol adopts common photon detectors rather than the sophisticated single-photon detectors required in the linear-optics-based protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.