69 resultados para Phosphorus in the body
Resumo:
The Bohai Sea was the site of the Chinese national GLOBEC programme. During the June 1997 cruises of R/V Science No.1, observations and experiments on zooplankton feeding were conducted. At five 48 h time-series stations the following observations and measurements on zooplankton were carried out: (1) diurnal vertical migration, by collecting samples at different layers every 3 h with a closing net; (2) diurnal feeding rhythms, by gut pigment analysis; and (3) ingestion rate, by both gut pigment analysis and the dilution method. A classification by body size was used to deal with the diversity of species and developmental stages of zooplankton assemblages. Samples were separated into three size groups: small (200-500 mu m), medium (500-1000 mu m) and large (> 1000 mu m). The results showed that the copepods (Calanus sinicus, Paracalanus parvus, Acartia bifilosa and Centropages mcmurrichi) performed clear diurnal vertical migrations. However, their behaviour was different at different stations. The variation in gut pigment content over the 24 h cycle showed strong diurnal feeding rhythms, particularly for the large size group. Gut pigment contents reached their daily maximum during the time from dusk to midnight (18:00-24:00). The peak value was about 10 times the minimum observed in the daytime. The in situ daily grazing rate, based on gut pigment contents and evacuation experiments, was 4.00-12.65 ng chla ind(-1) day(-1) for the small size group, 5.99-66.58 ng chla ind(-1) day(-1) for the medium size group and 31.31-237.13 ng chla ind(-1) day(-1) for the large size group. The copepods consumed only a small part (2.90-13.52%) of the phytoplankton biomass hut about 77% of the daily production. The grazing mortality rate of phytoplankton by microzooplankton (<200 mu m) measured by the dilution method ranged from 0.43 to 0.69 day(-1) The calculated daily consumption of phytoplankton biomass was 35-50%, and 85-319% of the potential production.
Resumo:
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The source and significance. of two mitrients, nitrogen. and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton, maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d(-1) outside the bay, 0.42 and 0.32 d(-1) inside the bay and 0.98 and 0.62 d(-1) in the harbor respectively. Outside the bay, the remineralized nitrogen (K-r = 24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(K-r = 3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (K-r = 3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that, nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.
Resumo:
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3-N+NH4-N+NO2-N), SRP and DRSi were 131.6, 1.2 and 155.6 mu M, respectively. The maximum Chl a concentration was 19.5 mg m(-3) in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 mu M and from 0.4 to 0.95 mu M, respectively. From 1963 to 2004, N:P ratios also increased from 30-40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m(-3), nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l(-1), much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.
Resumo:
JGOFS results showed that the ocean is a major sink for the increasing atmospheric carbon dioxide resulting from human activity. However, the role of the coastal seas in the global carbon cycling is poorly understood. In the present work, the inorganic carbon (IC) in the Yangtze River Estuary and Jiaozhou Bay are studied as examples of offshore sediments. Sequential extraction was used to divide inorganic carbon in the sediments into five forms, NaCl form, NH3 H2O form, NaOH form, NH2OH HCl form and HCl form. Studied of their content and influencing factors were also showed that NaCl form < NH3 H2O form < NaOH form < NH2OH HCl form < HCl form, and that their influencing factors of pH, Eh, Es, water content, organic carbon, organic nitrogen, inorganic nitrogen, organic phosphorus and inorganic phosphorus on inorganic carbon can be divided into two groups, and that every factor has different influence on different form or on the same form in different environment. Different IC form may transform into each other in the early diagenetic process of sediment, but NaCl form, NH3 H2O form, NaOH form and NH2OH HCl form may convert to HCl form ultimately. So every IC form has different contribution to carbon cycling. This study showed that the contribution of various form of IC to the carbon cycle is in the order of NaOH form > NH2OH HCl form > NH3 H2O form > NaCl form > HCl form, and that the contribution of HCl form contributes little to carbon cycling, HCl form may be one of end-result of atmospheric CO2. So Yangtze River estuary sediment may absorb at least about 40.96x10(11) g atmospheric CO2 every year, which indicated that offshore sediment play an important role in absorbing atmospheric CO2.
Resumo:
Phosphorus is a key element and plays an important role in global biogeochemical cycles. The evolution of sedimentary environment is also influenced by phosphorus concentrations and fractions as well as phosphate sorption characteristics of the marine sediments. The geochemical characteristics of phosphorus and their environmental records were presented in Jiaozhou Bay sediments. Profiles of different forms of phosphorus were measured as well as the roles and vertical distributions of phosphorus forms in response to sedimentary environment changes were investigated. The results showed that inorganic phosphorus ( IP) was the major fraction of total phosphorus ( TP); phosphorus which is bound to calcium, iron and occluded phosphorus, as well as the exchangeable phosphorus were the main forms of IP, especially calcium-phosphorus, including detrital carbonate-bound phosphorus ( Det - P) and authigenic apatite-bound phosphorus ( ACa - P), are the uppermost constituent of IP in Jiaozhou Bay sediments. Moreover, the lead-210 chronology technology was employed to estimate how much phosphorus was buried ultimately in sediments. And the research showed that the impacts of human activities have increased remarkably in recent years especially between the 1980s and 2000. According to research, the development of Jiaozhou Bay environment in the past hundred years can be divided into three stages; (I) before the 1980s characterized by the relatively low sedimentation rate, weak land-derived phosphorus inputs and low anthropogenic impacts; (2) from the 1980s to around 2000, accelerating in the 1990s, during which high sedimentation rates, high phosphorus abundance and burial fluxes due to the severe: human activities impacted on the whole environmental system; (3) after 2000, the period of the improvement of environment, the whole system has been improved including the decreasing sedimentation rates, concentration and the burial fluxes of phosphonas.
Resumo:
Planktonic microbial community structure and classical food web were investigated in the large shallow eutrophic Lake Taihu (2338 km(2), mean depth 1.9 m) located in subtropical Southeast China. The water column of the lake was sampled biweekly at two sites located 22 km apart over a period of twelve month. Site 1 is under the regime of heavy eutrophication while Site 2 is governed by wind-driven sediment resuspension. Within-lake comparison indicates that phosphorus enrichment resulted in increased abundance of microbial components. However, the coupling between total phosphorus and abundance of microbial components was different between the two sites. Much stronger coupling was observed at Site 1 than at Site 2. The weak coupling at Site 2 was mainly caused by strong sediment resuspension, which limited growth of phytoplankton and, consequently, growth of bacterioplankton and other microbial components. High percentages of attached bacteria, which were strongly correlated with the biomass of phytoplankton, especially Microcystis spp., were found at Site 1 during summer and early autumn, but no such correlation was observed at Site 2. This potentially leads to differences in carbon flow through microbial food web at different locations. Overall, significant heterogeneity of microbial food web structure between the two sites was observed. Site-specific differences in nutrient enrichment (i.e. nitrogen and phosphorus) and sediment resuspension were identified as driving forces of the observed intra-habitat differences in food web structure.
Resumo:
Two ectoparasitic ciliates, Trichodina fugu Imai et al., 1997 and T. jadranica Raabe, 1958, found on the gills and skin of the maricultured tiger puffer Takifugu rubripes on the China coast of the Yellow Sea, were studied using the dry silver nitrate method. Trichodina fugu is distinguished by its almost rod-shaped denticle blades. Trichodina jadranica is usually described as a small trichodinid with a clear central circle in the adhesive disc and with a low number of denticles. However, the data available suggest that the species is highly variable in morphometry and the Chinese population represents the largest in body size and denticle dimensions found to date. Based on the revision of T. jadranica, two major morphotypes, each represented by several populations are classified, differing in the shape of the blades, viz., distinctly curved and sickle-shaped with pointed distal ends (as in the classical T. jadranica) vs. less curved and more or less rectangle-like with rounded distal ends (as in T. domerguei gobii). Trichodina domerguei gobii Raabe,.1959, which was synonymised with T. jadranica, is thus elevated to species rank. Furthermore, Trichodina jadranica noblei Lom, 1970 has straight and stout blades with broadly rounded distal ends and is raised to species rank: T noblei Lom, 1970. Trichodina jadranica sensu Xu et al., 1995 shows high similarities in denticle shape and dimensions as well as the central granule pattern with T chlamydis Xu et al., 1999. Thus, it is synonymised with the latter species.
Resumo:
We constructed genetic linkage maps for the bay scallop Argopecten irradians using AFLP and microsatellite markers and conducted composite interval mapping (CIM) of body-size-related traits. Three hundred seventeen AFLP and 10 microsatellite markers were used for map construction. The female parent map contained 120 markers in 15 linkage groups, spanning 479.6 cM with an average interval of 7.0 cM. The male parent map had 190 markers in 17 linkage groups, covering 883.8 cM at 7.2 cM per marker. The observed coverage was 70.4% for the female and 81.1% for the male map. Markers that were distorted toward the same direction were closely linked to each other on the genetic maps, suggesting the presence of genes important for survival. Six size-related traits, shell length, shell height, shell width, total weight, soft tissue weight, and shell weight, were measured for QTL mapping. The size data were significantly correlated with each other. We subjected the data, log transformed firstly, to a principle component analysis and use the first principle component for QTL mapping. CIM analysis revealed one significant QTL (LOD=2.69, 1000 permutation, P<0.05) in linkage group 3 on the female parent map. The mapping of size-related QTL in this study raises the possibility of improving the growth of bay scallops through marker-assisted selection. (c) 2007 Published by Elsevier B.V.