109 resultados para Parameters.
Resumo:
Reversed-phase high performance liquid chromatography (RP-HPLC) was employed to develop predictive models for fish bioconcentration factors (BCF) of organic compounds. Estimation of BCF from RP-HPLC retention parameters on octadecyl-bonded silica gel (ODS), cyanopropyl-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns were investigated. The results show that, for a set of compounds belonging to different chemical classes, the CN stationary phase is the best one among the three columns and better than n-octanol/water model for BCF estimation. A multi-column RP-HPLC model, using the retention parameters on the CN and Ph columns as the variables of multiple linear regression equations, was further evaluated to estimate BCF of organic compounds belonging to different chemical classes, and the results show that the multi-column RP-HPLC model is better than that of any single RP-HPLC column for BCF estimation.
Resumo:
In this study, we used a rheological method to study the shape of DNA-cationic lipid complexes and model polyelectrolyte-lipid complexes. We introduced two kinds of anionic polyelectrolytes, sodium polygalacturonate (PGU) and sodium dextran sulfate (DSS), of varying size, as models for DNA. The prepared complexes were incubated under laminar flow conditions. The results show the same quantitative relation between the shape parameter of lipoplexes and the length of anionic polyelectrolytes, including DNA. The rheological behavior of PGU and DSS were similar to that of DNA. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The equilibrium properties and potential energy curves of the ground electronic state of CaF have been calculated using the Brueckner Doubles calculation with a triples contribution added [BD(T)] and the gradient-corrected density functional theory with three-parameter exact exchange mixing (B3LY-P) method, with 6-311 + G*,6-311 + G(2df,2pd) and 6-311 + G(3df,3pd) basis sets. All the computational PECs are fitted to analytical potential energy functions using Murrell-Sorbie, Huxley and Tang-Toennies potentials. Based on this, the spectroscopic parameters are calculated, and then compared with some other theoretical and experimental data. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A bar on the Brazos River near Calvert, Texas, has been analyzed in order to determine the geologic meaning of certain grain size parameters and to study the behavior of the size fractions with transport. The bar consists of a strongly bimodal mixture of pebble gravel and medium to fine sand; there is a lack of material in the range of 0.5 to 2 mm, because the source does not supply particles of this size. The size distributions of the two modes, which were established in the parent deposits, are nearly invariant over the bar because the present environment of deposition only affects the relative proportions of the two modes, not the grain size properties of the modes themselves. Two proportions are most common; the sediment either contains no gravel or else contains about 60% gravel. Three sediment types with characteristic bedding features occur on the bar in constant stratigraphic order, with the coarsest at the base. Statistical analysis of the data is based on a series of grain size parameters modified from those of Inman (1952) to provide a more detailed coverage of non-normal size curves. Unimodal sediments have nearly normal curves as defined by their skewness and kurtosis. Non-normal kurtosis and skewness values are held to be the identifying characteristics of bimodal sediments even where such modes are not evident in frequency curves. The relative proportions of each mode define a systematic series of changes in numerical properties; mean size, standard deviation and skewness are shown to be linked in a helical trend, which is believed to be applicable to many other sedimentary suites. The equations of the helix may be characteristic of certain environments. Kurtosis values show rhythmic pulsations along the helix and are diagnostic of two-generation sediments.
Resumo:
Twenty-five samples from six subenvironments in the barrier-lagoon systems in northeastern Shandong province, China, are examined. A statistical method is used to study the roundness variation of grains of different sizes. Roundness of very fine pebble and very coarse sand varies significantly in different subenvironments. It is possible to discriminate among aqueous depositional environments using the roundness of grains of these sizes. Roundness of grains finer than 0.84 φ is not distinguishable in different subenvironments.
Resumo:
The unique surface-sensitive properties make quantum dots (QDs) great potential in the development of sensors for various analytes. However, quantum dots are not only sensitive to a certain analyte, but also to the surrounding conditions. The controlled response to analyte may be the first step in the designing of functional quantum dots sensors. In this study, taking the quenching effect of benzoquinone (BQ) on CdTe QDs as model, several critical parameters of buffer solution conditions with potential effect on the sensors were investigated. The pH value and the concentration of sodium citrate in the buffer solution critically influenced the quenching effects of BQ.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
Bond covalency and valence of elements in HgBa2Can-1CunO2n+2+delta (n = 1, 2, 3, 4) were calculated and their relationship with T-c was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest T-c sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher T-c. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.
Resumo:
The X-ray diffraction patterns of the crystalline aromatic ketone polymer PEKEKmK (aryl ether ketone ether ketone ketone polymer containing meta-phenyl links) have been investigated (for the chemical structure, see Formula). An orthorhombic unit cell is proposed to contain two chains with a = 0.772 nm, b = 0.604 nm and c = 2.572 nm. According to the orthorhombic system, the 11 reflections of this polymer were indexed. Meanwhile, variation in unit cell parameters with crystallization temperatures of PEKEKmK was also investigated. [GRAPHICS]
Resumo:
Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr(3)MrhO(6) (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.
Resumo:
By fitting the spinodals of poly(vinyl methyl ether)/deuterated polystyrene (PVME/PSD) systems, the adjustable parameters epsilon (12)* and delta epsilon* in the Sanchez-Balasz lattice fluid (SBLF) theory could be determined for different molecular weights. According to these parameters, Flory-Huggins and scattering interaction parameters were calculated for PVME/PSD with different molecular weights by means of the SELF theory. From our calculation, Flory-Huggins and scattering interaction parameters are both Linearly dependent on the reciprocal of the temperature, and almost linearly on the concentration of PSD. Compared with the scattering interaction parameters, the Flory-Huggins interaction parameters decreased more slowly with an increase in the concentration for all three series of blends.
Resumo:
Chemical bond parameters in RBa2Cu4O8(R = Dy, Ho, Er, Tm, Yb) and Y2Ba4Cu7O14.3 were calculated by using complex chemical bond theory. The results indicated that the bond covalency in CuO chain was larger than that in CuO2 plane. For metal atoms, the bond covalency of five coordinated case was larger than that of six coordinated case.