137 resultados para PROTON EXHANGE MEMBRANE FUEL CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization of novel acid-base polyimide membranes for the use in polymer electrolyte membrane fuel cell is presented in this paper. The sulfonated polyimides (SPIs) bearing basic triphenylamine groups were easily synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), sulfonated diamine of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamines of 4,4'-diaminotriphenylamine (DATPA). The effects of the structure of the dianhydride and diamines on the properties of SPI membranes were evaluated through the study of membrane parameters including water sorption, proton conductivity, water stability, dimensional changes, and methanol permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion(R) membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at I M CH3OH, 2 atm oxygen and 90degreesC yields a current density of 100 mA/cm(2) at 0.53 V cell voltage. The peak power density is 120 mW/cm(2). The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are recognized as the most promising new power generation technology, but hydrogen supply is still a problem. In our previous work, we have developed a LiLaNiO/gamma-Al2O3 catalyst, which is excellent not only for partial oxidation of hydrocarbons, but also for steam reforming and autothermal reforming. However, the reaction needs pure oxygen or air as oxidant. We have developed a dense oxygen permeable membrane Ba0.5Sr0.5Co0.8Fe0.2O3 which has an oxygen permeation flux around 11.5 ml/cm(2) min at reaction conditions. Therefore, this work is to combine the oxygen permeable membrane with the catalyst LiLaNiO/gamma-Al2O3 in a membrane reactor for hydrogen production by mixed reforming of heptane. Under optimized reaction conditions, a heptane conversion of 100%, a CO selectivity of 91-93% and a H-2 selectivity of 95-97% have been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed consists of 11 parallel straight channels. The length, width and depth of single channel, which had rectangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 mm. The experimental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bubbles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simple chemical reduction route is discussed that results in small size, uniform dispersion of Pd nanoparticles supported on carbon black. HVO42-, the tridentate oxoanion with its O-O distance of 2.76 angstrom, closely matching with the Pd-Pd distance (2.75 angstrom), is expected to be an effective stabilizer for Pd according to the lattice size-matching binding model (Finke, R. G.; Ozkar, S. Coord. Chem. Rev. 2004, 248, 135). Because it has never been tested, HVO42- is exploited and found to be a very simple and effective stabilizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel sulfonated diamine monomer, 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid (BAPNDS), was synthesized. A series of sulfonated polyimide copolymers were prepared from BAPNDS, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether (ODA). Flexible, transparent, and mechanically strong membranes were obtained. The membranes displayed slightly anisotropic membrane swelling. The dimensional change in thickness direction was larger than that in planar. The novel SPI membranes showed higher conductivity, which was comparable or even higher than Nafion 117. Membranes exhibited methanol permeability from 0.24 x 10(-6) to 0.80 X 10(-6) cm(2)/s at room temperature, which was much lower than that of Nafion (2 x 10-6 CM2/s). The copolymers were thermally stable up to 340 degrees C. These preliminary results have proved its potential availability as proton-exchange membrane for PEMFCs or DMFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, Nafion (R) membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion (R)-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using membrane gets higher as ethanol solution gas chromatography analysis. The experimental results show that the swelling degree of Nafion (R) concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment. (c) 2005 Elsevier B.V. All rights reserved.