88 resultados para PROBE
Resumo:
Recent studies have focused on the structural features of DNA-lipid assemblies. In this paper, we take methyl green (MG) as a probe molecule to detect the conformational change of DNA molecule induced by dimethyldioctadecylammonium bromide (DDAB) liposomes before the condensation process of DNA begins. DDAB-induced DNA topology changes were investigated by cyclic voltammetry (CV), circular dichroism (CD) and UV-VIS spectrometry. We find that upon binding to DNA, positively charged liposomes induce a conformational transition of DNA molecules from the native B-form to the C motif. Conformational transition in DNA results in the binding modes of MG to DNA, changing and being isolated from DNA to the solution. More stable complexes are formed between DNA and DDAB. That is also proved by the melting study of DNA.
Investigating mechanical response of single chain polystyrene particles by scanning probe techniques
Resumo:
Single chain polystyrene particles were obtained by dilute solution casting method. The sample with both single chain polystyrene particles and multi-chain (more than 1000 molecular chains) polystyrene particles was obtained by a little more concentrate solution. Force modulation technique showed that single chain polystyrene particles were softer than multichain polystyrene particles. On the other hand, nanoindentation experiments on multi-chain particles and bulk polystyrene manifested that the elastic modulus of multi-chain polystyrene particles was very close to that of bulk polystyrene. Therefore, it was concluded that single chain polystyrene particles were softer than bulk polystyrene,which indicated that the density of intrachain entanglement points in the single chain polystyrene particles was not as large as that of the interchain entanglement points in the bulk state.
Resumo:
Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.
Resumo:
Plant extracellular calmodulin (CaM) has been purified from cauliflower and identified with NAD kinase(NADK) activation and inhibition effect of CaM antagonist W7, Tb-3.1 fluorescence titration showed that extracellular CaM contained four metal-binding sites, The excitation spectrum and emission specturm indicated that extracellular CaM contained one tyrosine residue which could transfer energy to bound Tb3+. Based on Forster type nonradiative energy transfer theory, the distances of Tyr-->sites III, IV have been determined, these are 1. 104 nm(Tyr --> III, site) and 1. 056 nm(Tyr --> N, site). By studing the effect of CaM antagonist W7 and CaM antibody on Tb3+-sensitized fluorescence, it was found that the binding sites of W7 and antibody were located on the c-terminal part of plant extracellular CaM which contains domain III and domain IV.
Resumo:
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used simultaneously to analyze a model membrane bilayer structure consisting of a phospholipid outer monolayer deposited onto organosilane-derivatized mica surfaces, which were constructed by using painting and self-assembly methods. The phospholipid used as outer monolayer was dimyristoylphosphatidylcholine (DMPC). The hydrocarbon-covered substrate that formed the inner half bilayer was composed of a self-assembly monolayer (SAM) of octadecyltrichloroorganosilane (OTS) on mica. SAMs of DMPC were formed by exposing hydrophobic mica to a solution of DMPC in decane/isobutanol and subsequently immersing into pure water. AFM images of samples immersed in solution for varying exposure times showed that before forming a complete monolayer the molecules aggregated into dense islands (2.2-2.6 nm high) on the surface. The islands had a compact and rounded morphology. LFM, coupled with topographic data obtained with the atomic force mode, had made possible the distinction between DMPC and OTS. The rate constant of DMPC growth was calculated. This is the first systematic study of the SAM formation of DMPC by AFM and LFM imaging. It reveals more direct information about the film morphology than previous studies with conventional surface analytical techniques such as infrared spectroscopy, X-ray, or fluorescence microscopy.
Resumo:
The process of deoxyribonucleio acid (DNA) sample preparation in scanning tunneling microscope (STM) and atomic force microscope (AFM) is reviewed. The main discussions are devoted to the methods, advantages or drawbacks and improvement of the DNA sample's immobilization and spreading.
Resumo:
Because of the extremely sensitivity to the local environment of the D-5(0) --> F-7(2) transition of Eu3+ ion, the fluorescence of Eu3+ ions was Studied by introducing Eu3+ ions to TiO2 gel by the sol-gel method, from which the structural changes of TiO2 gel were characterized. The results showed that the intensity of D-5(0) --> F-7(2) transition increased with the increasement of heat treatment temperature, which indicated the evaporation of molecular water and the completeness of the condensation reaction. Because of the quenching of the fluorescence induced by the cluster of Eu3+ ions, the addition of Al3+ ions greatly enhanced the emission intensity of Eu3+ ion.
Resumo:
A new nickel (II)-cyanometallates modified on glassy carbon electrode was prepared by a new method and studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroelectrochemistry. It was found that the NiHCF film existed in two forms: Ni2Fe(II)-(CN)(6) and M2NiFe(II)(CN)(6), Fe(CN)(3)(6-) codeposited in the NiHCF film existing in free cation or bridged-bond state depended on the property of the cations in electrolyte: in NaCl and LiCl solution, it is in bridges-bonded, but in HCl and KCl, it is free.
Resumo:
The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The interaction between horseradish peroxidase (HRP) and the cryo-hydrogel was probed by using hydrazines which show high specificity of the reaction of the edge in the prosthetic heme of horseradish peroxidase. For comparison, the interaction of hydrazine with the horseradish peroxidase adsorbed on graphite electrode was also carried out by using steady-state response of the enzyme electrode and cyclic voltammetry. In order to obtain a proper explanation of the kinetic parameters for the enzymatic reaction, the theoretical expressions of I-max and K-M' in the Michaelis-Menten equation for the experimental system were provided. (C) 1997 Elsevier Science B.V.
Resumo:
The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.
Resumo:
C-60 films, prepared by solution casting, were studied by means of in situ probe beam deflection (PBD) combined with cyclic voltammetry (CV). PBD is a powerful technique for investigation of phenomena at the electrode/electrolyte interface in acetonitrile with quaternary ammonium and alkali metal salts as supporting electrolytes. In tetra-n-butylammonium (TBA(+)) salt solution, a stable CV can be obtained during the first two reduction/reoxidation waves. On reduction, injection of cations to maintain charge balance and dissolution of small amount of C-60(-) (TEA(+)) and/or C-60(2-) (TBA(+))(2) are detected. During the reoxidation process ejection of cations and injection of anions occur simultaneously, especially for the second reoxidation wave. In the case where TBABr is the supporting electrolyte, the accompanied behavior is more complicated than in TBABF(4), TBAClO(4), and TBAPF(6) solutions. A small pair of prewaves in CV are proposed due to oxidation/reduction of C-60 domains but not dissolution/redeposition of C-60 film. Extending the potential scan range to the third reduction wave, no apparent corresponding reoxidation wave is related to the third reduction wave, the electroactivity of the film disappears rapidly and dissolution of C-60 film is observed. In tetraethylammonium (TEA(+)) and NAClO(4) solutions, the electrochemistry of the C-60 films is unstable, and potential scans lead to dissolution of flaking of the film.
Resumo:
Probe beam deflection(PBD) technique together with electrochemical techniques such as cyclic voltammetry was used to study the ion exchange in prussian blue(PB) film and its analogue indium hexacyanoferrate (InHCF) chemically modified electrodes, The ion exchange mechanism of PB was verified as following: K2Fe2+FeI(CN)(6)(-e--K+)reversible arrow(+e-+K+)KFe(3+)Fe(I)(CN)(6)(-xe--xK+)reversible arrow(+xe-+xK+) [Fe3+FeI(CN)(6)](x)[KFe3+FeI(CN)(6)](1-x) where on reduction in contact with an acidic KCl electrolyte, H+ enter PB film before K+. Both the cations and anions participate concurrently in the redox process of InHCF, meanwhile K+ ion plays a major role in the whole charge transfer process of this film with increasing radii of anions.