95 resultados para Organic water pollutants.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel water-soluble fluorescent nanosphere as fluorosensor was prepared by emulsifier-free emulsion copolymerization of styrene with naphthalimide derivative (A). The fluorosensor was high sensitive for detection of Cu2+. Comparied with other fluorosensors based on organic fluorophore, it has two advantages. First, there is no pollution to environment in the use of it. Second, it can be used repeatedly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-standing conductive films of organic-inorganic hybrids were prepared employing the sol-gel process of (3-glycidoxypropyl)trimethoxysilane (GPTMS) and water-borne conductive polyaniline (cPANI) in water/ethanol solution. The hybrids displayed a percolation threshold for electrical conductivity at a volume fraction of 2.1% polyaniline (PANI); the maximum conductivity of the hybrids reached 0.6 S/cm. GPTMS showed good compatibility with water-borne cPANI during the sol-gel process, and freestanding conductive films were obtained at room temperature. Transmission electron microscopy images of the hybrids indicated that the cPANI was dispersed in the inorganic phase in nanoscale. Because of good confinement of cPANI chains in the inorganic network, water resistance of the hybrid films was significantly improved compared with that of pure cPANI; the electrical conductivity of the films kept stable for 6-7 days soaking in water, whereas it decreased sharply for 1 day soaking for the pure cPANI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique sol-gel enzyme electrode for inert organic solvents is developed that is based on the partition equilibrium of the substrate between water-organic solvent media and the enzyme membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fullerenes-extracted soot (FES) is the by-product of fullerenes production. Retention characteristics at different temperatures for 17 volatile organic compounds (VOCs) on FES are measured. The adsorption and desorption efficiencies for VOCs on FES adsorbent tubes range from 40.8 to 117%, most of them being 100+/-20%. The values are compared with Tenax GR, an adsorbent commonly used in environmental analysis. FES can be used as an adsorbent of low cost to collect VOCs in environmental samples. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly (ethylene oxide) (PEO) and poly (trimethopropane trimethacrylate) (PTMPTMA) interpenetrate networks have been synthesized. The confined crystallization behavior of PEO in the PTMTYTMA networks has been investigated by a differential scanning calorimeter and scanning electron microscope. The degree of PEO crystallinity in PEO/PTMPTMA interpenetrate networks reduces with the increase of PTMPTMA. PEO is in an amorphous state when the concentration of PEO is lower than 50% in the interpenetrate networks system. The melting points of crystalline PEO in the networks are lower than that of pure PEG, and the melting point of PEO in the networks is higher and increases with the increase of PEO in the interpenetrate networks. Wide-angle X-ray diffraction results show that the PEO crystallite size perpendicular to the (120) plane is not affected as much as PEO in silica networks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was developed for the determination of total mercury in biological samples. The effects of aqueous ammonia, ethylenediamine and triethanolamine on Hg signal intensity by inductively coupled plasma mass spectrometry has been evaluated and the possible mechanisms discussed. It has been proved that the signal intensity of Hg significantly increases with adding, in the presence of small amounts of aqueous ammonia, ethylenediamine or triethanolamine. The normalized intensity (the signal intensity ratio with amine and without amine) of Hg increases as the concentration of aqueous ammonia, ethylenediamine or triethanolamine increases, but the degree of enhancement of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The normalized intensity of Hg with aqueous ammonia, ethylenediamine and triethanolamine decreases as the nebulizer flow rate increases, but decreasing degree of aqueous ammonia was smaller than that of ethylenediamine and triethanolamine. The higher the RF powers the higher the normalized intensity of Hg at the same nebulizer flow rate. The addition of aqueous ammonia, ethylenediamine and triethanolamine into analytical solutions significantly improved the transport efficiency of Hg. The detection limit of Hg is improved about ten times by the addition of ethylenediamine or triethanolamine under the optimum experimental parameters. The method has been used to determine mercury in biological standard reference materials (SRM). The analytical results are very close to the certified values and the determined values for similar samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The responses of a cryohydrogel tyrosinase enzyme electrode to four substrates in three pure water immiscible organic solvents were investigated. Kinetic parameters, the maximum kinetic current, I-max, the apparent Michaelis-Menten constant, K-m(app), and I-max/K-m(app), were calculated. The I-max/K-m(app) value was taken as an indicator of the catalytic efficiency of the sensor. The effect of the substrate hydrophobicity on I-max/K-m(app) and response time of the sensor were discussed. The effects of both hydrophobicity (log P) and dielectric constant (epsilon) of the organic solvent on the catalytic efficiency of the enzyme in the organic phase were studied. (C) 1997 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ STM has been used to study the structure of hemoglobin(Hb) in two kinds of organic media. In hydrophobic organic solvent such as carbon tetrachloride, the structure of Hb is almost the same as in aqueous solution, similar to its native structure. However, when in hydrophilic organic solvent such as dimethylformamide, the two dimers of Hb molecule become separate and unfold to a certain extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dimethylformamide-polyhydroxyl cellulose organo-hydrogel has been prepared, and its applications for enzyme immobilization in construction of organic phase biosensors have been exploited. With horseradish peroxidase, tyrosinase, and bilirubin oxidase immobilized in the organohydrogel, enzyme electrodes can be operated in various situations, including aqueous buffer, oil/water mixtures, and anhydrous organic solvents, and even in dimethylformamide, to determine analytes of different solubilities, e.g., organic peroxides, phenolic compounds and bilirubin. Biosensing has no restrictions in terms of measuring media and solubilities of analytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential windows of the system water/pure solvent (W/P) and water/solvent mixtures(W/S) have been investigated by cyclic voltammetry with solvents whose dielectric constants lie between 5.87 and 34.82. In the presence of LiCI in the aqueous phase and tetrabutytammoniumtetraphenylborate(TBATPB) in the organic phase, the systems water/allyl iso-thiocyanate (W/AIT) and water/nitrobensene (W/NB) show a same wide epotential window. thermodynamic parameters of ion transfer W/AIT interface were determined. In systems of W/P and V/S the influence solvent effect on the standard gibbs energies of transfer of was discussed.