114 resultados para Nematocyst Venom
Resumo:
Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 6 1 -residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop 11, and the cation groups of all three arginines face out of the molecular surface of NT1 This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
A highly active cobra venom factor (CVF) was isolated from the venom of Naja kaouthia by sequential column chromatography. It displays strong anticomplementary activity, and has 1515 U of anti complementary activity per mg protein. A single dose of 0.1 mg/kg CVF given i.v. to rats completely abrogated complement activity for nearly 5 days. Given 0.02 mg/kg of CVF. the complement activity of rats was reduced by more than 96.5% in 6 It. In guinea pig-to-rat heart transplant model, rats treated with a single dose of 0.05 mg/kg CVF had significantly prolonged xenograft survival (56.12 +/- 6.27 h in CVF-treated rats vs. 0.19 +/- 0.07 h in control rats, P < 0.001). (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The recent re-emergence of tuberculosis, especially the multidrug-resistant cases, has highlighted the importance of screening effective novel drugs against Mycobacterium tuberculosis. In this study, the in vitro activities of small peptides isolated from snake venom were investigated against multidrug-resistant M. tuberculosis. Minimum inhibitory concentrations (MICs) were determined by the Bactec TB-460 radiometric method. A small peptide with the amino acid sequence ECYRKSDIVTCEPWQKFCYREVTFFPNHPVYLSGCASECTETNSKWCCTTDKCNRARGG (designated as vgf-1) from Naja atra (isolated from Yunnan province of China) venom had in vitro activity against clinically isolated multidrug-resistant strains of M. tuberculosis. The MIC was 8.5 mg/l. The antimycobacterial domain of this 60aa peptide is under investigation. (C) 2003 Elsevier Science B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
A chymotrypsin inhibitor, designated NA-CI, was isolated from the venom of the Chinese cobra Naja atra by three-step chromatography. It inhibited bovine (x-chymotrypsin with a K-i of 25 nM. The molecular mass of NA-CI was determined to be 6403.8 Da by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) analysis. The complete amino acid sequence was determined after digestion of S-carboxymethylated inhibitor with Staphylococcus aureus V8 protease and porcine trypsin. NA-CI was a single polypeptide chain composed of 57 amino acid residues. The main contact site with the protease (PI) has a Phe, showing the specificity of the inhibitor. NA-CI shared great similarity with the chymotrypsin inhibitor from Naja naja venom (identities = 89.5%) and other snake venom protease inhibitors. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
L-Amino acid oxidases (LAAOs) are widely distributed in snake venoms, which contribute to the toxicity of venoms. However, LAAO from Bungarus fasciatus (B. fasciatus) snake venom has not been isolated previously. In the present study, LAAO from B. fasciat
Resumo:
Jerdonitin is a P-II class snake venom metalloproteinase comprising metalloproteinase and disintegrin domains. In this study, we established a high-level expression system in Pichia pastoris and developed a purification strategy for the recombinant Jerdonitin. This recombinant Jerdonitin degraded fibrinogen at a level of activity comparable with its wild type. The effects of recombinant Jerdonitin on inhibiting ADP-induced human platelet aggregation were in a dose-dependent manner with an IC50 of 248 nM. In addition, we reported here that Jerdonitin can significantly inhibit the growth of several cell lines, including human liver cancer cells (Bel7402), human leukemia cells (K562) and human gastric carcinoma cells (BGC823). This study offers recombinant Jerdonitin that will be valuable for further functional and structural studies of Jerdonitin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The general and synchronous spectra of phospholipase A(2) (PLA(2)) isolated from Chinese agkistrodon blomhoffii Ussurensis snake venom were studied. The chromophores of PLA(2) were mainly contributed by tyrosine and tryptophane residues when the intervals between the excitation wavelength and the emssion waveleagth (Delta lambda) were 20nm and 75nm, respectively. The pH of buffers could change the fluorescence intensities of PLA(2) by changing the charge distribution of its amino acid chain. Ca2+ can not only increase the emission fluorescence intensity of PLA(2) but also improve the reaction rate of PLA(2) with its corresponding substrate DPPC.
Resumo:
Hemorrhagin III (AaH III) was separated and purified from the crude snake venom of Agkistrodon acutus, and its molecule weight was determined accurately to be 23; 284.4 +/- 0.1 by LDI1700-MALDI-TOF-MS. Emission spectra of AaH III showed that Trp residues were located by a great degree in the hydrophobic area. Addition of SDS and guanidine-HCl led to change of the molecular conformation of AaH III, and caused the fluorescence quenching of Trp residues. The red-shifted emission band of AaH III after adding guanidine-HCl showed that Trp residues exposed in polar solvents. The effects of pH, EDTA and metal ions on the fluorescence spectra of AaH III were also investigated.
Resumo:
Using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The homogeneities and molecular weights of three arginine esterases from snake venom, which possessing therapeutic use in myocardial infarction, were determined and compared, MALDI-TOF-MS is possessed of high accuracy, high sensitivity and rapidity. MALDI-TOF-MS and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) can provide complementary and confirmatory results information. MALDI-TOF-MS can be directly used as an important method for the purification of snake venom complexes successfully.
Resumo:
The matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) spectra of four enzymes (PLA, AEase, Fibrolase, L-a.a. oxidase) in Agkistrodon blomhoffii Ussurensis venom, were given and interpreted. The experiment data showed that MALDI-TOF-MS can be used directly in enzyme analysis with high sensitivity and rapidity. In addition, the results were better than those from sodium dodecyl sulfate-polyacrylamide.
Resumo:
The L-a. a, oxidase of Agkistrodon blomhof fii ussurensis of Changbai Mountains in northeast of China has been separated by using ion-exchange and gel filtration techniques, This enzyme is composed of two subunits, the molecular weight of one subunit is about 36 000, the another is about 57 000, determined by sodium dodecyl sulfate-polyacryamide gel electrophoresis and matrix assisted laser desorption ion/time of flight mass spectrometry, The activity of L-a, a. oxidase determined using L-Leu as substrate. The optimal pH of the enzyme is 4. 5 similar to 5. 5 and 8 similar to 9. The UV-Visible absorption spectrum of L-a, a. oxidase shows the characteristics of flavor-proteins.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to analyze two enzymes, phospholipase AZ and fibrinolytic enzyme isolated from Chinese Agkistrodon blomhoffii Ussurensis venom. Using sinapinic acid as the matrix, positive ion mass spectra of the enzymes were obtained, In addition to the dominant protein [M+H](+) ions, multimeric and multiply charged ions were also observed in the mass spectra, The higher the concentration of the enzymes, the more multiply charged polymer and multimeric ions were detected, Our results indicate that MALDI-TOFMS can provide a rapid and accurate method for molecular weight determination of snake venom enzymes, Mass accuracies of 0.1 and 0.3 % were achieved by analysis of highly dialyzed phospholipase A2 and fibrinolytic enzyme, and these results are much better than those obtained using sodium dodecyl sulfate-palyacrylamide gel electrophoresis. MALDI-TOFMS thus provides a reliable method to determine the purity and molecular weight of these enzymes, which are of potential use as therapeutants, Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.
Resumo:
In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn2+, Mg2+, and Mn2+ in sodium phosphate buffer (0.02 M, pH 8.0) could increase protease activity. Mn2+ had the best effects among the three metal cations and the effect was about 20 times of that of Zn2+ or Mg2+ and its maximal protease activity was 2.3 x 10(5) U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively. (c) 2005 Elsevier Ltd. All rights reserved.
Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye
Resumo:
Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye was determined against three pest species, Stephanitis pyri Fabriciusa, Aphis medicaginis Koch, and Myzus persicae Sulzer. R. esculentum full proteinous venom had different insecticidal activity against S. pyri Fabriciusa, A. niedicaginis Koch, and M. persicae Sulzer. The 48 It LC50 values were 123.1, 581.6, and 716.3 mu g/mL, respectively. Of the three pests, R. esculentuin full proteinous venom had the most potent toxicity against S. pyri Fabriciusa, and the corrected mortality recorded at 48 It was 97.86%. So, S. pyri Fabriciusa could be a potential target pest of R. esculentum full proteinous venom. (c) 2005 Elsevier Ltd. All rights reserved.