142 resultados para N-of-1 Trials
Resumo:
Several zeolite catalysts such as SAPO-11, ZSM-11, ZSM-12, etc. were selected to convert I-hexene to branched hexenes in this work. Pore size of the zeolite catalyst plays an important role on the yield and the distribution of branched isohexenes. And the zeolite catalysts with the pore size of 0.6nm are optimum to produce dimethylbutenes (DMB). SAPO-11 zeolite is a suitable skeletal isomerization catalyst, especially in the production of methyl pentenes. Under the following reaction conditions: WHSV=1.0 h(-1), H-2/hexene=8, T=250 degreesC, P=0.2 MPa, the yield of skeletal isohexenes remains above 80% at the prolonged time-on stream of 80 h, accompanying low C5-, C7+ products and low carbon deposition on the catalyst.
Resumo:
A zirconium-based Ziegler-Natta catalytic system has been tested in the dimerization of 1-butene. It was found that the concentration of Et2AlCl, Ph3P and PhONa as well as the reaction temperature had great influences on the activity and selectivity of the catalyst. Under the optimum reaction conditions, the conversion of 1-butene is 91.9%, and the selectivity of dimers is 76.7%. Basic ligands such as Ph3P and PhONa can inhibit isomerization of 1-butene to 2-butene effectively. In addition, the metal hydride mechanism was also suggested and some indirect evidence was obtained in favor of this mechanism.
Resumo:
In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
A series of phosphoryl (P=O) contained compounds: triethylphosphate (a), diethyl phenyl phosphate (b), ethyldiphenylphosphate (c) triarylphosphates (d and h-m), triphenylphosphine oxide (e), phenyl diphenylphosphinate (f) and diphenyl phenylphosphonate (g) have been prepared. Iron catalysts, which are generated in situ by mixing the compounds with Fe(2-EHA)(3) and (AlBu3)-Bu-i in hexane, are tested for butadiene polymerization at 50 degrees C. Phosphates donated catalysts have been, unprecedently, found to conduct extremely high syndiotactically (pentad, rrrr=46.1-94.5%) enriched 1,2-selective (1,2-structure content=56.2-94.3%) polymerization of butadiene.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.
Resumo:
The oxovanadium phosphonates (VO(P-204)(2) and VO(P-507)(2)) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAIR(2), R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P-204)(2) and VO(P-507)(2) showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)(3)). Among the examined catalysts, the VO(P-204)(2)/Al(Oct)(3) system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing M-n of 3.76 x 10(4) g/mol, and M-w/M-n ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 degrees C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 degrees C (polymer yield > 33%); the M-n value and M-w/M-n, ratio were independent of polymerization temperature in the range of 40-70 degrees C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (> 65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.
Resumo:
One mu-dichloro bridged diiridium complex and three mononuclear iridium(III) complexes based on the 1,3,4-oxadiazole derivatives as cyclometalated ligands and acetylacetonate (acac) or dithiolates O,O'-diethyldithiophosphate (Et(2)dtp) or N,N'-diethyldithiocarbamate (Et(2)dtc) as ancillary ligands have been synthesized and systematically studied by X-ray diffraction analysis. The results reveal that three mononuclear complexes all adopt distorted octahedral coordination geometry around the iridium center by two chelating ligands with cis-C-C and trans-N-N dispositions, which have the same coordination mode as the diiridium dimer. The dinuclear complex crystallizes in the monoclinic system and space group C2/c, whereas three mononuclear iridium complexes are all triclinic system and space group P(1) over bar. In the stacking structure of the dimer, one-dimensional tape-like chains along the b-axis are formed by hydrogen bondings, which are strengthened by pi stacking interactions between phenyl rings of 1,3,4-oxadiazole ligands. Then these chains assemble a three-dimensional alternating peak and valley fused wave-shape structure. In each stacking structure of three mononuclear complexes, two molecules form a dimer by the C-H center dot center dot center dot O hydrogen bondings, and these dimers are connected by pi stacking interactions along the b-axis, constructing a zigzag chain.
Resumo:
A facile and efficient one-pot synthesis of highly substituted pyridin-2(1H)-ones is developed via the Vilsmeier-Haack reaction of readily available 1-acetyl,1-carbamoyl cyclopropanes, and a mechanism involving sequential ring-opening, haloformylation, and intramolecular nucleophilic cyclization reactions is proposed.
Resumo:
A reinvestigation of the reaction between C-60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)(2)C-60 by UV-vis and NMR. The earlier incorrectly assigned 1,2-(PhCH2)(2)C-60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)(2)C-60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E-1/2 for reduction of 1,4-(PhCH2)(2)C-60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C-60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)(2)C-60 are also reported.
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
Four new iridium(III) complexes 1-4, with 1,3,4-oxadiazole derivative as cyclometalated ligand for the first time, have been synthesized and structurally characterized by NMR, EA, MS and X-ray diffraction analysis (except 1). The stronger ligand field strength of the dithiolate ancillary ligands results in higher oxidation potentials and lower HOMO energy levels of complexes than acetylacetone. The absorption spectra of these complexes display low-energy metal-to-ligand charge transfer transition ranging from 350 to 500 nm. Complexes with dithiolate ancillary ligand emit at maximum wavelengths of ca. 500 nm, blue shifting 17 and 11 nm with respect to their counterpart with acetylacetone ligand. The electrophosphorescent devices with 2-4 as phosphorescent dopant in emitting layer have been fabricated. All devices have a low turn-on voltage in the range of 4.5 and 4.9 V. A high-efficiency green emission with maximum luminous efficiency of 5.28 cd/A at current density of 1.37 mA/cm(2) and a maximum brightness of 2592 cd/m(2) at 15.2 V has been achieved in device using 2 as emitter.