141 resultados para Motzkin Decomposition
Resumo:
The catalytic properties of the passivated, reduced passivated, and fresh bulk molybdenum nitride for hydrazine decomposition were evaluated in a microreactor. The reaction route of hydrazine decomposition over molybdenum nitride catalysts seems to be the same as that of Ir/gamma-Al2O3 catalysts. Below 673 K, the hydrazine decomposes into N-2 and NH3. Above 673 K, the hydrazine decomposes into N-2 and NH3 first, and then the produced NH3 further dissociates into N-2 and H-2. From the in situ FT-IR spectroscopy, hydrazine is adsorbed and decomposes mainly on the Mo site of the Mo2N/gamma-Al2O3 catalyst. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.
Resumo:
A new poly(fullerene oxide) thin film material has been fabricated by thermal activation and electron bombardment on hexanitro[60]fullerene (HNF) film deposited on a An substrate, all under vacuum conditions. The reaction products in the polymerization process are analyzed by XPS, UPS, IR, TGA-MS and LDI-MS techniques. It is found that the main effect of thermal and radiation treatments is to induce cleavage of -NO bonds from HNF molecules resulted in the release of nitric oxide gas and the formation of fullerene-bound oxyradicals, C-60-C-6. Spectroscopic evidence strongly suggests that rearrangement of fullerenic nitro moieties into nitrito groups is involved in the HNF decomposition process prior to the generation of reactive oxyradical intermediates. Consequently, the intermolecular coupling reaction of these oxyradicals leads to carbon polymer networks containing oxygen-bridged fullerenes. The thermally generated polymeric thin film is stable up to 900 K. Electron bombardment is also effective in both the decomposition of -NO2 groups and the removal of -OH groups present in HNF films. UV irradiation at 365 nm alone is shown to be not as efficient for the polymer formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The environmentally friendly removal of NO has been investigated using continuous microwave discharge (CMD) at atmospheric pressure. In these experiments, conversions of NO to N-2 as well as NO2 were mainly observed for both dry and wet feed gas, which showed a great difference from those observed with other discharge methods. The effects of a series of reaction parameters, including microwave input power, O-2 concentration, NO concentration, and gas flow rate, on the product distribution and energy efficiency were also studied. Under all reaction conditions, the conversions of NO to N-2 were higher than those to NO2. The highest conversion of NO to N-2 was 88%. The reaction rate of NO removal and the effects of the different discharge modes on NO conversion and product distribution are also discussed. Through comparison of the results of different discharge modes, it was found that the addition of CH4 apparently increased the conversion of NO to N-2 as well as the energy efficiency. A possible reaction process is suggested.
Resumo:
The density function theory was used to calculate the potential energy surface for the decomposition of CF3OF. The geometries, vibrational frequencies and energies of all stationary points were obtained. The calculated harmonic frequencies agreed well with the experimental ones. Three decomposition channels of CF3OF were studied. The calculated reaction enthalpy (29.85 kcal/mol) of the elimination reaction CF3OF --> CF2O + F-2 was in good agreement with the experimental value (27.7 kcal/mol). The O-F bond of CF3OF is broken easily by comparing the energies, while the decomposition channel to yield the CF30 and F radicals is the main reaction path. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The catalytic decomposition of hydrazine over a series of MoNx/gamma-Al2O3 catalysts with different Mo loadings was investigated in a monopropellant thruster (10 N). When the Mo loading is equal to or higher than the monolayer coverage of MoO3 on gamma-Al2O3, the catalytic performance of the supported molybdenum nitride catalyst is close to that of the conventionally used Ir/gamma-Al2O3 catalyst. The MoNx/gamma-Al2O3 catalyst with a loading of about 23wt% Mo (1.5 monolayers) shows the highest activity for hydrazine decomposition. There is an activation process for the MoNx/gamma-Al2O3 catalysts at the early stage of hydrazine decomposition, which is probably due to the reduction of the oxide layer formed in the passivation procedure.
Resumo:
Catalytic decomposition of NO was studied over Fe/NaZSM-5 catalyst. Novel results were observed with the microwave heating mode. The conversion of NO to N-2 increased remarkably with the increasing of Fe loading. The effects of a series of reaction parameters, including reaction temperature, O-2 concentration, NO concentration, gas flow rate and H2O addition, on the productivity of N-2 have been investigated. It is shown that the catalyst exhibited good endurance to excess O-2 in the microwave heating mode. Under all reaction conditions, NO converted predominantly to N-2. The highest conversion of NO to N-2 was up to 70%. (C) 2002 Elsevier Science B.V. All rights reserved.