67 resultados para Molds (Fungi)
Resumo:
Chitosan, carboxymethyl chitosan (CIVICS) and chitosan sulfates (CSS) with different molecular weight were modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3 -benzene-disulfo-chloride to give 12 kinds of new hydroxylbenzenesulfonailides derivatives of them. The preparation conditions of the derivatives were discussed in this paper, and their structures were characterized by FT-IR and C-13 NMR spectroscopy. The solubility of the derivatives was measured in the experiment. In addition, their antimicrobial activities against four bacteria and five crop-threatening pathogenic fungi were tested in the experiment. Besides, the rule and mechanism of their antibacterial activities were discussed in this paper. (C) 2009 Published by Elsevier B.V.
Resumo:
In this paper, 20 kinds of different 2-(alpha-arylamino phosphonate)-chitosan (2-alpha-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-alpha-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-alpha-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 mu g mL(-1). Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sulfanilamide derivatives of chitosan (2-(4-acetamido-2-sulfanimide)-chitosan (HSACS, LSACS), 2-(4-acetamido-2-sulfanimide)-6-sulfo-chitosan (HSACSS, LSACSS) and 2-(4-acetamido-2-sulfanimide)-6-carboxymethyl-chitosan (HSACMCS, LSACMCS)) were prepared using different molecular weights of chitosan (CS), carboxymethyl chitosan (CMCS) and chitosan sulfates (CSS) reacted with 4-acetamidobenzene sulfonyl chloride in dimethylsulfoxide solution. The structures of the derivatives were characterized by FT-IR spectroscopy and elemental analysis, which showed that the substitution degree of sulfanilamide group of HSACS, HSACSS, HSACMCS, LSACS, LSACSS and LSACMCS were 0.623, 0.492, 0.515, 0.576, 0.463 and 0.477, respectively. The solubility of the derivatives (pH < 7.5) was higher than that of chitosan (pH < 6.5). The antifungal activities of the derivatives against Aiternaria solani and Phomopsis asparagi were evaluated based on the method of Jasso et al. in the experiment. The results indicated that all the prepared sulfanilamide derivatives had a significant inhibiting effect on the investigated fungi in the polymer concentration range from 50 to 500 mu g mL(-1). The antifungal activities of the derivatives increased with increasing the molecular weight, concentration or the substitution degree. The sulfanilamide derivatives of CS, CMCS and CSS show stronger antifungal activities than CS, CMCS and CSS. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E coli was 15.62 and 62.49 mu g/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50 - 500 mu g/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Oxalate decarboxylases (OXDCs) (E.C. 4.1.1.2) are enzymes catalyzing the conversion of oxalate to formate and CO2. The OXDCs found in fungi and bacteria belong to a functionally diverse protein superfamily known as the cupins. Fungi-originated OXDCs are secretory enzymes. However, most bacterial OXDCs are localized in the cytosol, and may be involved in energy metabolism. In Agrobacterium tumefaciens C58, a locus for a putative oxalate decarboxylase is present. In the study reported here, an enzyme was overexpressed in Escherichia coli and showed oxalate decarboxylase activity. Computational analysis revealed the A. tumefaciens C58 OXDC contains a signal peptide mediating translocation of the enzyme into the periplasm that was supported by expression of signal-peptideless and full-length versions of the enzyme in A. tumefaciens C58. Further site-directed mutagenesis experiment demonstrated that the A. tumefaciens C58 OXDC is most likely translocated by a twin-arginine translocation (TAT) system.
Resumo:
It is known that global climate changed from the early Tertiary “Green House” to the Quaternary “Ice House” of cyclic glacial-interglacial climatic changes. Since the middle Pleistocene, the climate cycles changed from 40 kyr to 100 kyr, and the amplitudes of climatic fluctuations increased significantly. Therefore, it is important to study the climate changes since the middle Pleistocene. The loess-paleosol sequence in China is considered as one of the most continuous continental records of the last 2.58 Ma. Paleoclimatic and environmental changes have been widely extracted through various climatic parameters. However, the history of paleovegetation on the Loess Plateau still remains unclear. Did an extensive broadleaf forest ever exist on the Loess Plateau? Pollen preserved in the loess and paleosol provides a direct record for vegetation and paleoenvironmental change on the Plateau. However, because it is difficult to extract sufficient pollen grains from loess, the pollen record since the middle Pleistocene especially in the central part of the Chinese Loess Plateau has not been well studied. So we preliminarily focus on the palynological records of the loess-paleosol sequence spanning the last 630 kyr at Luochuan and aim to understand the evolution of vegetation and climate change on the Chinese Loess Plateau. The main results and conclusions are as follows: 1. The palynological results show that the grassland has been a dominant vegetation in the Luochuan area since 630 kyr, even during the intervals of relatively warm and wet climatic conditions. 2. The pollen concentration of Luochuan section sharply decreases from the bottom of S1 to downward depth. This decrease can be attributed to depositional environment rather than climate change. In loess, not only oxidation, but also the PH of deposits and bacteria or fungi have been able to degrade sporopollenin. 3. The paleoclimatic condition during S4 stage, characterized with warmer condition during the early stage, was warmer and wetter than that during S5 in Luochuan area. Paleoclimate was warmer and wetter during the early stage of S5 and became colder and drier later. The special pedogenic features of S5-I can be attributed to a prolonged pedogenic duration rather than a warm-wet climate. 4. Evidence from pollen assemblage suggests that the Holocene vegetation has been affected by human impacts, especially after the Yangshao Culture. 5. The present steppe environment on the loess plateau is mainly due to natural conditions. Temperature, seasonal precipitation and soil structure are three important factors which control the vegetation type. 6. The vegetation on the loess plateau is characterized with zonal or azonal distribution. So local conditions should be taken into account when recover natural vegetation. Finally, the restoration and reconstruction of ecosystem on the loess plateau area should be focused on planting grassland rather than forests.
Resumo:
真菌在矿物和岩石风化过程中起着不可忽视的作用,岩生真菌对岩石的风化作用研究是微生物风化作用研究的热点问题之一。本研究利用从碳酸盐岩表面分离到一株真菌,开展了岩生真菌对碳酸盐岩风化作用的模拟试验,研究了该真菌对不同碳酸盐岩风化作用的过程和效果,分析了真菌代谢产物,发酵液方解石饱和指数以及风化过程中稀土元素的行为,探讨了该真菌对碳酸盐岩风化作用的机理。 对该岩生真菌GZKM01菌株形态学特征和基于ITS序列的分子鉴定结果表明该菌株隶属真菌界(Kingdom fungi)、半知菌亚门(Deuteromycotina)、腔孢纲(Coelomycetes)、球壳孢目(Sphaeropsidales)、鲜壳孢科 (Nectrioidaceae)座壳孢属(Aschersonia)。 实验条件下显示该真菌对碳酸盐岩具有较强的风化作用,可以大大地提高岩石中Ca2+的溶出量,发酵液上清液Ca2+浓度大大高于培养基对照和纯水对照。以加石灰岩矿粉的发酵液(摇床培养)为例,发酵液上清液最高Ca2+浓度分别是死菌对照和纯水对照处理最高Ca2+浓度的3.98倍和13.73倍。 真菌在生长和风化岩石过程中可以产生有机酸、醇类等挥发性代谢产物;真菌矿物相互作用过程中,真菌与矿物形成菌体-矿物复合体或聚集体,真菌胞外分泌物在矿粉表面形成生物膜结构;真菌对碳酸盐岩的风化作用导致发酵液方解石饱和指数SIc不断增大,溶液处于方解石过饱和状态。真菌对碳酸盐岩的风化作用包括有机酸和其他小分子物质的化学降解作用,机械破坏作用,碳酸酐酶的催化作用,真菌的对矿质元素的吸收作用,次生成矿作用等。 真菌作用下,发酵液上清夜稀土元素的含量普遍高于K2HPO4浸泡液中稀土元素的含量, 与K2HPO4浸泡液相比真菌浸出的稀土元素δCe值较大、δEu值较小,富Ce贫Eu,稀土元素分异现象明显;真菌菌体中富Ce贫Eu的特征更加明显,菌体对Ce有强烈的富集作用。代谢产物的络合作用,真菌产生的代谢产物对pH的调节作用,菌体的直接吸收和吸附作用,有机质的吸附作用,氧化还原作用等是造成稀土元素溶出、迁移和富集的主要原因。 分析认为该真菌对碳酸盐岩风化作用包括一系列的生物化学和生物物理过程,这两个过程相互依赖,相互促进,协同作用,岩生真菌在碳酸盐岩的风化成土过程中起着非常重要的作用。该真菌对岩石中稀土元素溶出、迁移和富集同样起着重要作用。通过综合分析风化壳的风化强度、稀土元素分布特征、微生物活动等可以为评估微生物在岩石风化过程中所起的作用提供依据。上述研究加深了对岩生真菌与碳酸盐岩相互作用过程和机理的理解,为进一步研究碳酸盐岩微生物风化作用提供资料。