86 resultados para Model knowledge conversion of Nonaka
Resumo:
A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.
Resumo:
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure (270)Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy V-cen(r). The branching ratios of alpha decays from the ground state of a parent nucleus to the ground state 0(+) of its deformed daughter nucleus and to the first excited state 2(+) are calculated in the framework of the GLDM. The results support the proposal that a measurement of alpha spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus (270)Hs.
Resumo:
In this report we investigate eta-meson productions oil the proton via electromagnetic and hadron probes in a chiral quark model approach. The observables, such as, differential cross section and beam asymmetry for the two productions are calculated and compared with the experiment. The five known resonances S-11(1535) S-11(1650); P-13(1720) D-13(1520), and F-15(1680) are found to be dominant in the reaction mech-anisms in both channels. Significant, contribution from a new S-11 resonances are deduced. For the so-called "missing resonances", no evidence is found within the investigated reactions. The partial wave amplitudes for pi(-)p -> eta n are also presented.
Resumo:
By using the gauge potential decomposition, we discuss the self-dual equation and its solution in Jackiw-Pi model. We obtain a new concrete self-dual equation and find relationship between Chern-Simons vortices solution and topological number which is determined by Hopf indices and Brouwer degrees of Psi-mapping. To show the meaning of topological number we give several figures with different topological numbers. In order to investigate the topological properties of many vortices, we use five parameters (two positions, one scale, one phase per vortex and one charge of each vortex) to describe each vortex in many vortices solutions in Jackiw-Pi model. For many vortices, we give three figures with different topological numbers to show the effect of the charge on the many vortices solutions. We also study the quantization of flux of those vortices related to the topological numbers in this case.
Resumo:
The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.
Resumo:
By using phi-mapping method, we discuss the topological structure of the self-duality solution in Jackiw-Pi model in terms of gauge potential decomposition. We set up relationship between Chern-Simons vortex solution and topological number, which is determined by Hopf index and Brouwer degree. We also give the quantization of flux in this case. Then, we study the angular momentum of the vortex, which can be expressed in terms of the flux.
Resumo:
The preparation of light alkenes by the gas phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of model high hydrocarbons ( hexane, cyclohexane, isooctane and decane in the GOC process and hexane in the COC process) was investigated in this paper. The selection for the feed in the GOC process was flexible. Excellent conversion of hydrocarbons ( over 85%) and high yield of light alkenes ( about 50%) were obtained in the GOC of various hydrocarbons including cyclohexane at 750 degreesC. In the GOC process, the utilization ratio of the carbon resources was high; CO dominated the produced COX (the selectivity to CO2 was always below 1%); and the total selectivity to light alkenes and CO was near or over 70%. In the COC of hexane over three typical catalysts (HZSM-5, 10% La2O3/HZSM-5 and 0.25% Li/MgO), the selectivity to COX was hard to decrease and the conversion of hexane and yield of light alkenes could not compete with those in the GOC process. With the addition of H-2 in the feed, the selectivity to COX was reduced below 5% over 0.1% Pt/HZSM-5 or 0.1% Pt/MgAl2O4 catalyst. The latter catalyst was superior to the former catalyst due to its perfect performance at high temperature, and with the latter, excellent selectivity to light alkenes ( 70%) and the conversion of hexane (92%) were achieved at 850 degreesC ( a yield of light alkenes of 64%, correspondingly).
Resumo:
The hydroconversion of n-paraffins is a key reaction in hydrodewaxing of lubricating base oil. In this paper, we investigate the performance of Pt/SAPO-11 catalysts for isomerization of n-paraffins by the model compound of n-dodecane. Under this experimental condition, yields of feed isomers as well as cracking products are a function of the total n-dodecane conversion. Primary products are methylundecane while multi-brancheds and cracking products are formed in successive reactions. The result shows that the addition of Sn increases the selectivity for isomerization reaction. The most ideal experimental data for hydroconversion of n-dodecane is that the selectivity of isomerized products gets 90% when conversion of n-dodecane is 90% for the Sn-promoted Pt/SAPO-11 catalyst.
Resumo:
Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.
Resumo:
It has been 10 years since the publication of the relative risk model (RRM) for regional scale ecological risk assessment. The approach has since been used successfully for a variety of freshwater, marine, and terrestrial environments in North America, South America, and Australia. During this period the types of stressors have been expanded to include more than contaminants. Invasive species, habitat loss, stream alteration and blockage, temperature, change in land use, and climate have been incorporated into the assessments. Major developments in the RRM have included the extensive use of geographical information systems, uncertainty analysis using Monte Carlo techniques, and its application to retrospective assessments to determine causation. The future uses of the RRM include assessments for forestry and conservation management, an increasing use in invasive species evaluation, and in sustainability. Developments in risk communication, the use of Bayesian approaches, and in uncertainty analyses are on the horizon.
Resumo:
Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.
Resumo:
Up-conversion of 45PbF(2)-45GeO(2)-10WO(3) oxy-fluoride glasses co-doped with Yb3+ and Er3+ ions were prepared by fusion method through melting at 1223 K and then annealing at 653 K for 4 h. Transmittance of the undoped host glass was beyond 73% in a range of 0.6-2.5 mu m and the co-doped glasses still provided good transmittance beyond 50%. Refractive indices of the host and co-doped glasses were 1.517 and 1.650, respectively. Blue, green and red fluorescence spectra were observed in a range of 400-700 nm under 980 nm diode laser excitation. Up-conversion spectra at about 410, 518, 530and 650 nm were assigned to the 4f electron transitions of H-2(9/2) -> I-4(15)/(2), H-2(15/2) -> I-4(15/2) S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2) of Er3+ ion, respectively. The mechanism of energy transfer between Yb3+ and Er3+ ions in the glass was analyzed. Raman shift shows the non-radiative relaxation of the glass sample is low.
Resumo:
The brittle-ductile transition (BDT) of particle toughened polymers was extensively studied in terms of morphology, strain rate, and temperature. The calculation results showed that both the critical interparticle distance (IDc) and the brittle-ductile transition temperature (T-BD) of polymers were a function of strain rate. The IDc reduced nonlinearly with increasing strain rate, whereas T-BD increased considerably with increasing strain rate. The effects of temperature and plasticizer concentration on BDT were discussed using a percolation model. The results were in agreement with the experiments.