82 resultados para Mixed training
Resumo:
Ce1-XNiXO2 oxides with X varying from 0.05 to 0.5 were prepared by different methods and characterized by XRD and TPR techniques. Ce(0.7)Mi(0.3)O(2) sample prepared by sol-gel method shows the highest reducibility and the highest catalytic activity for methane combustion. Three kinds of Ni phases co-exist in the Ce1-XNiXO2 catalysts prepared by sol-gel method: (i) aggregated NiO on the support CeO2, (ii) highly dispersed NiO with strong interaction with CeO2 and (iii) Ni atoms incorporated into CeO2 lattice. The distribution of different Ni species strongly depends on the preparation methods. The highly dispersed NiO shows the highest activity for methane combustion. The NiO aggregated on the support CeO2 shows lower catalytic activity for methane combustion, while the least catalytic activity is found for the Ni species incorporated into CeO2. Any oxygen vacancy formed in CeO2 lattice due to the incorporating of Ni atoms adsorbs and activates the molecular oxygen to form active oxygen species. So the highest catalytic activity for methane combustion on Ce0.7Ni0.3O2 catalyst is attributed not only to the highly dispersed Ni species but also to the more active oxygen species formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.
Resumo:
Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Multiphoton ionization of the hydrogen,bonded pyrrole-water clusters (C4H5N)(n)(H2O)(m) is studied with a reflectron-time of flight mass spectrometer at 355 mn. With increasing partial concentration of pyrrole in a gas mixture source, a series of poly-pyrrole-water binary-mixed cluster ions can be observed, including unprotonated cluster ions [(C4H5N)(x)(H2O)(y)](+), protonated cluster ions [(C4H5N)(x)(H2O)(y)](+) and dehydrogenated cluster ions [(C4H4N)(C4H5N)(x)(H2O)(y)](+). Ab initio calculations of their structures, bond strengths, charge distributions and reaction energies are carried out. Stable structures of these clusters are obtained from the calculations. A probable formation mechanism of the cluster ions [(C4H5N)(x)(H2O)(y)](+), [(C4H5N)(x)(H2O)(y)]H+ and [(C4H4N)(C4H5N)(x) (H2O)(y)](+) is supposed to be the ionization of clusters followed by dissociation.
Resumo:
Multiphoton ionization of binary mixed clusters (C5H5N)(x)-(H2O)(y) at 532, 355 and 266 nm laser wavelengths has been investigated using TOF mass spectrometer. The experiments showed that almost all the products were protonated ions, At 532 and 355 nm, the products were mainly protonated pyridine clusters (C5H5N)(n)-H+, while at 266 nm, mixed binary cluster ions (C5H5N)(m)- (H2O)(n)-H+ appeared. It was found that the abundance of the [(C5H5N)(3)-H2O-H](+) ions was abnormally high. The calculation indicated that the ion [(C5H5N)(3)-H2O-H](+) is Of a kind of magic number structures with C-3v symmetry. A stepwise reaction mechanism is suggested that photoionization is followed by dissociation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogenolysis of mono(cyclopentadienyl)-ligated rare-earth-metal bis(alkyl) complexes Cp'Ln-(CH2SiMe3)2(THF) (Ln = Y (1a), Dy (1b), Lu (1c); Cp' = C5Me4SiMe3) with PhSiH3 afforded the mixed hydride/alkyl complexes [Cp'Ln(mu-H)(CH2SiMe3)(THF)](2) (Ln = Y (2a), Dy (2b), Lu (2c)). The overall structure of complexes 2a-c is a C-2-symmetric dimer containing a planar symmetric Ln(2)H(2) core at the center of the molecule. Deprotonation of ArOH (Ar = C6H2-Bu-t(2)-2,6-Me-4) by the metal alkyl group of 2a-c led to formation of the mixed hydride/aryloxide derivatives [Cp'Ln(mu-H)(OAr)](2) (Ln = Y (3a), Dy (3b), Lu (3c)), which adopt the dimeric structure through hydride bridges with trans-accommodated terminal aryloxide groups.
Resumo:
The reactions of sodium p-sulfonatocalix[4]arene (Na5L) and terbium/europium(III) chloride in the presence of pyrazine-N,N'-dioxide (PNNO) in aqueous solutions gave the crystalline complexes 1 and 2. Both structures contain molecular capsules of p-sulfonatocalix[4] arene with PNNO as guest molecules in the cavity of the calix[4]arenes. The molecular capsules are connected through sodium and terbium (or europium) centers forming a three-dimensional framework.
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).
Resumo:
Microphase separation of binary mixed A/B polymer brushes exposed to different solvents is studied using Single-Chain-in-Mean-Field simulations. Effects of solvent quality and selectivity, grafting density, composition, and chain-length asymmetry are systematically investigated, and diagrams of morphologies in various solvents are constructed as a function of grafting density and composition or chain-length asymmetry. The structure of the microphase segregated morphologies lacks long-range periodic order, and it is analyzed quantitatively Using Minkowski measures.
Resumo:
In the mixed-metal complex catena-poly[bis[diaquasilver(I)] [bis[aquacopper(II)]-mu(3)-pyridine-2,5-dicarboxylato-2': 1: 1'kappa N-5,O-2: O-5: O-5, O-5'-mu-pyridine-2,5-dicarboxylato-2: 1 kappa(4) N, O-2: O-5, O-5'-disilver(I)-mu(3)-pyridine-2,5-dicarboxylato-1: 1': 2 '' kappa(5) O-5, O-5': O-5: N, O-2-mu pyridine-2,5-dicarboxylato-1': 20 ''kappa(4) O-5, O-5': N, O-2] hexahydrate], {[Ag(H2O)(2)][AgCu(C7H3NO4)(2)(H2O)] center dot 3H(2)O}(n), a square-pyramidal Cu-II center is coordinated by two N atoms and two O atoms from two pyridine-2,5-dicarboxylate (2,5-pydc) ligands and a water molecule, forming a [Cu(2,5-pydc)(2)-( H2O)](2-) metalloligand. One Ag I center is coordinated by five O atoms from three 2,5-pydc ligands and, as a result, the [Cu(2,5-pydc)(2)(H2O)](2-) metalloligands act as linkers in a unique mu(3)-mode connecting Ag-I centers into a one-dimensional anionic double chain along the [101] direction.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.