235 resultados para Minnesota River
Resumo:
A total of 30 shallow lakes, located along the middle and lower reaches of the Yangtze River, were studied to assess the relative importance of nutrients and zooplankton biomass in determining the phytoplankton biomass in subtropical China. Zooplankton biomass and nutrients both varied greatly in these lakes. Factor analysis and multiple linear regression showed that phytoplankton biomass was positively correlated with TN, NH4+, NO3- and TP, while it did not show any negative relationship to zooplankton biomass. Meanwhile, the phytoplankton biomass showed contrary relationships to the mass ratio of TN/TP in spring and summer, suggesting that in nutrient-richer lakes the dominant phytoplankton species have different preferences for TN/TP ratio. The insignificant top-down control of phytoplankton biomass may be attributed to the dominance of small-sized crustaceans and low crustacean biomass resulting from cyanobacterial dominance and planktivorous fish predation as well as other factors. Thus, it is likely that nutrients were more important than zooplankton biomass in explaining the total variance of phytoplaDkton biomass in these subtropical lakes.
Resumo:
Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.
Resumo:
Redfin culter (Culter erythropterus) is a small lethic freshwater fish and widely distributed in the adjacent lakes of the Yangtze River of China. Five microsatellite loci were applied to investigate the genetic variation and population structure of redfin culter from seven lakes in the middle-and-lower reaches of the Yangtze River. The gene diversity was high among the populations (H > 0.9), the average number of alleles among seven populations was low with a range from 2.00 to 3.87. The mean observed (H-O) and expected (H-E) heterozygosity ranged from 0.111 to 0.419 and from 0.162 to 0.750, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found in 50% of the total locus-population combination tests in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percentage of variance among and within these populations were 6.18 and 93.82, respectively. The Fst values (0.062, P < 0.001) among studied populations indicated that there were significant genetic differentiations among redfin culture populations from the scattered lakes with different connections to the Yangtze River. These results are useful for the evaluation and conservation of small freshwater fishes. The factors that may be involved in low intra-population polymorphism and the pattern of the population genetic structure of redfin culter from the Yangtze River were discussed.
Resumo:
The paper demonstrates the nonstationarity of algal population behaviors by analyzing the historical populations of Nostocales spp. in the River Darling, Australia. Freshwater ecosystems are more likely to be nonstationary, instead of stationary. Nonstationarity implies that only the near past behaviors could forecast the near future for the system. However, nonstionarity was not considered seriously in previous research efforts for modeling and predicting algal population behaviors. Therefore the moving window technique was incorporated with radial basis function neural network (RBFNN) approach to deal with nonstationarity when modeling and forecasting the population behaviors of Nostocales spp. in the River Darling. The results showed that the RBFNN model could predict the timing and magnitude of algal blooms of Nostocales spp. with high accuracy. Moreover, a combined model based on individual RBFNN models was implemented, which showed superiority over the individual RBFNN models. Hence, the combined model was recommended for the modeling and forecasting of the phytoplankton populations, especially for the forecasting.
Resumo:
We surveyed the benthic algae at 32 sites in the Gangqu River system during May 2005. Among the 162 different taxa observed, 88.8% were diatoms. Achnanthes linearis and Achnanthes lanceolata var. elliptica were the dominant species, comprising 17.1% and 14.3% of the total relative abundance, respectively.
Resumo:
As a relatively isolated and unique freshwater population, the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is the most endangered subpopulation of this species. The objective of this study was to improve our understanding of their reproductive endocrinology by measuring (radioimmunoassay) serum concentrations of FSH, LH, estradiol (E-2), progesterone (P-4) and testosterone (T-2) in free-ranging animals. Blood samples were collected from 66 Yangtze finless porpoises (41 males and 25 females) captured in the middle and lower reaches of the Yangtze River. Based on significant variation of serum T-2 concentrations in males with body length (BL) > 138 cm, we inferred that they were mature; in these animals, there were significant seasonal variations in serum T-2 concentrations, with the highest concentrations in March and April (502.0 +/- 319.8 ng/dL, mean +/- S.D.) and the lowest in December (79.4 +/- 83.2 ng/dL). Serum T-2 concentrations positively correlated with serum concentrations of LH and weakly correlated with serum concentrations of E-2, whereas there was a significant negative correlation between serum LH and FSH concentrations in males > 138 cm. The smallest apparently pregnant female porpoise had a BL of 130 cm. Serum P-4 concentrations ranged from 13.2 to 112.4 ng/mL (43.9 +/- 28.3 ng/mL) in pregnant females, and fluctuated under 1.0 ng/mL in non-pregnant females with BL > 130 cm. Serum LH concentrations were significantly higher in non-pregnant females > 130 cm versus those females < 130 cm. To our knowledge, this is the first study of endocrine-related maturity and seasonal breeding characteristics of the Yangtze finless porpoise. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This study describes the current status of the small fish community in Niushan Lake in China, and examines the spatial and seasonal variations of the community in relation to key environmental factors. Based on macrophyte cover conditions, the lake was divided into three major habitat types: (1) Potamogeton maackianus habitat, (2) Potamogeton maackianus and Myriophyllum spicatum habitat, and (3) uncovered or less-covered habitat. Fish were sampled quantitatively in the three habitat types by block nets seasonally from September 2002 to August 2003. A total of 10 469 individuals from 27 fish species were caught, among which 20 species were considered as small fishes. Rhodeus ocellatus, Paracheilognathus imberbis, Pseudorasbora parva, Micropercops swinhonis and Cultrichthys erythropterus were recognized as dominant small fishes according to their abundance and occurrence. It was noted that (1) small fishes predominated the total number of fish species in the lake, which reflected to some degree the size diminution phenomenon of fish resources; (2) many small fishes had plant detritus as their food item, which was consistent with the abundance of macrophyte detritus in the lake and implied the importance of detritus in supporting small fish secondary production. Canonical correspondence analysis suggested that the spatial distributions of most small fishes were associated with complex macrophyte cover conditions. Macrophyte biomass was positively correlated with species richness, diversity index and the catch per unit of effort (CPUE) of the fish community. Water depth had no significant effects on species diversity and distribution of the small fishes. Correspondence analysis revealed a higher occurrence of the small fishes and higher abundance of individuals in summer and autumn. Seasonal length-frequency distributions of several species indicated that more larval and juvenile individuals appeared in spring and summer. This study provides some baseline information which will be essential to long-term monitoring of small fish communities in the Yangtze lakes.
Resumo:
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July-September in 2003-2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river-connected lakes (SL) was nearly 33 times that in permanently river-connected lakes (RL), and more than six times that in city lakes (NC) and non-urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 mu g L-1) was detected in Dianshan Lake. 3. MC-RR and MC-LR were the primary toxin variants in our data. MC-RR, MC-YR and MC-LR were significantly correlated with Ch1 a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus UP) and NH4+ with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO3- + NO2- were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochernical factors.
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
A sediment core was collected from the centre of Wanghu Lake, in the Middle Reaches of the Yangtze River. The recent part of the core was dated using a combination of Pb-210 and spheroidal carbonaceous particle (SCP) techniques. Extrapolating this chronology dated the laminated section of the core, between 723 and 881 mm, to the first half of the 18th century and this section was selected for detailed study. The thicknesses of the laminae were measured using reflecting and polarizing microscopes whilst geochemistry was determined by an electron probe. The thickness of the dark layers was found to be positively correlated with titanium concentrations, and negatively correlated with aluminium and potassium concentrations. The thickness of the light layers was found to be negatively correlated with the concentrations of titanium. It is concluded that the dark layers were deposited from the Fushui River, a tributary of the Yangtze River, under periods of normal flow whilst the light Layers were mainly deposited from the Yangtze River itself during flood periods. Documentary evidence for floods occurring in the take catchment corresponded with thick laminations of high titanium concentration. Further, two of the three thickest, light laminations with low titanium concentrations were found to be synchronous with recorded flood dates of the main Yangtze River in its Middle Reaches, but one was synchronous with a local drought. These data suggest that the Lake sediment provides an archive of the relative water levels of the Yangtze and Wanghu including floods of both the main Yangtze River and the local hydrological regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Garra rotundinasus, a new cyprinid species from the upper Irrawaddy River basin in Yunnan, China, is herein described. It shares with G. gravelyi the presence of a snout having a poorly developed proboscis represented by a truncate area in front of the nostrils, a character distinguishing both from all other Southeast Asian and Chinese congeners. The two species are distinct in coloration, morphometric and meristic characters. The sympatrically occurring G. tengchongensis is very similar to G. rotundinasus in possessing 36-37 perforated lateral line scales, 5 or 6 scales between the anus and anal-fin origin, and an anterior position of the anus (anus to anal distance 32.1-51.8% of pelvic to anal distance). Garra rotundinasus can be differentiated from G. tengehongensis in having a more slender caudal peduncle, a larger disc and no dark central band on the dorsal fin.
Resumo:
Source levels and phonation intervals of whistles produced by a free-ranging baiji (Chinese river dolphin) were measured in the seminatural reserve of Shishou in Hubei, China. A total of 43 whistles were recorded over 12 recording sessions. The mean dominant frequency (the frequency at the highest energy) was 5.7 kHz (s.d.=0.67). The calculated source level was 143.2 dB rms re 1 mu Pa (s.d.=5.8). Most phonation intervals were shorter than 460 s, and the average interval was 205 s (s.d. = 254). Theoretical detection range of baiji's whistle was 6600 m at the present study site, but it could reduce a couple of hundred meters in practical noisy situation in the Yangtze River. Sporadic phonation (205 s interval on average) with relatively faint signal of baiji was considered, to be difficult to be detected by a towing hydrophone system. Stationed monitoring or slow speed towing of hydrophones along the river current is recommended. (c) 2006 Acoustical Society of America.
Resumo:
We examined DNA polymorphism of the plankton community in the Three Gorges Reservoir Region of Yangtze River and studied its relationships to species composition. Samples of the plankton community were collected from nine sampling sites and analyzed by random amplified polymorphic DNA (RAPD). Nine of 60 screened primers generated a total of 88 observable 180 to 1400 by bands, all of which were polymorphic. Cluster analysis of the resulting binary format from DNA banding patterns grouped the target communities into three clusters. The topology of the constructed diagram from species composition data was generally similar to that based on RAPD markers.
Resumo:
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H (O)) and expected (H (E)) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.