74 resultados para Method of dihedral angles
Resumo:
OGY method is the most important method of controlling chaos. It stabilizes a hyperbolic periodic orbit by making small perturbations for a system parameter. This paper improves the method of choosing parameter, and gives a mathematics proof of it.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The influences of microdefects and dislocations on the lattice parameters of undoped semi-insulating GaAs single crystals were analyzed, and a novel nondestructive method for measuring stoichiometry in undoped semi-insulating GaAs was established in this letter. The comparison of this method with coulometric titration indicates that the method of nondestructive measurements is indeed convenient and reliable. (C) 1996 American Institute of Physics.
Resumo:
Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical model always stable for any Courant number, and which saves CPU time. To illustrate the efficiency of the characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized test cases on a sphere in the Yin-Yang grid system.
Resumo:
The differential cross-sections for elastic scattering of F-17 and O-17 on Pb-208 have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degrees-20 degrees) for F-17 having exotic structure, while no turning point was observed in the O-17 elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon.
Resumo:
As one of the most typical wetlands, marsh plays an important role in hydrological and economic aspects, especially in keeping biological diversity. In this study, the definition and connotation of the ecological water storage of marsh is discussed for the first time, and its distinction and relationship with ecological water requirement are also analyzed. Furthermore, the gist and method of calculating ecological water storage and ecological water requirement have been provided, and Momoge wetland has been given as an example of calculation of the two variables. Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement. For reasonably spatial and temporal variation of water storage and rational water resources planning, the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions, ecological demand and actual water resources.
Resumo:
The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.
Resumo:
A novel solid-state method of the preparation of zinc sulfide nanoparticles is reported. By solid-state reaction of zinc acetate and thioacetamide at low temperature, zinc sulfide nanoparticles of different sizes were prepared. The temperature of preparation varied from room temperature to 300 degrees C. The particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and photoluminescence spectrum. X-ray diffraction patterns revealed that the particles exhibited pure zinc-blende crystal structure and that particle size increased with increasing temperature. The TEM micrograph showed that the mean particle size was about 40 nm for the sample heated at 100 degrees C. A blue shift was observed in the photoluminescence emission spectrum. A possible mechanism of the reaction corresponding to our observation is proposed, (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A new and efficient extraction method of endohedral metallofullerenes, especially of rare-earth elements encapsulated metallofullerenes, has been reported in this paper. Soxhlet-extraction of raw soot with toluene was used in the first step to wash away most accompanying C-60, C-70. Then pyridine was chosen as solvent to obtain high-temperature and high pressure extract. Two kinds of extract were analysed by DEI-MS and LDI-MS, the results indicate that this two-step method can provide the extract which has the highest fraction of endohedral metallofullerenes. So it will greatly simplify the following separation and purification processes of metallofullerenes.
Resumo:
The algebraic formulas of 1.5 and 2.5 rank are given for four space groups P2(1), Pn, Pna2(1), P2(1)2(1)2(1). It is better that the results of applying them to estimating general type of phases for four correspondent crystal structures. And a method of transforming algebraic formulas from 1.5(2.5) rank is proposed.
Resumo:
The algebraic formulas of 1.5 and 2.5 rank which can be applied to estimating +/- pi/2 type of phases for P2(1)2(1)2(1) space group were derived using the method of structure factor algebra. Both types of the formulas are satisfactory for two known crystal structures in estimating their +/- pi/2 type of phases.
Resumo:
An improved method of PCR in which the small segment of conchocelis is amplified directly without DNA extraction was used to amplify a RUBISCO intergenic spacer DNA fragment from nine species of red algal genus Porphyra (Bangiales, Rhodophyta), including Porphyra yezoensis (Jiangsu, China), P. haitanensis (Fujian, China), P. oligospermatangia (Qingdao, China), P. katadai (Qingdao, China), P. tenera (Qingdao, China), P. suborboculata (Fujian, China), P. pseudolinearis (Kogendo, Korea), P. linearis (Devon, England), and P. fallax (Seattle, USA). Standard PCR and the method developed here were both conducted using primers specific for the RUBISCO spacer region, after which the two PCR products were sequenced. The sequencing data of the amplicons obtained using both methods were identical, suggesting that the improved PCR method was functional. These findings indicate that the method developed here may be useful for the rapid identification of species of Porphyra in a germplasm bank. In addition, a phylogenetic tree was constructed using the RUBISCO spacer and partial rbcS sequence, and the results were in concordant with possible alternative phylogenies based on traditional morphological taxonomic characteristics, indicating that the RUBISCO spacer is a useful region for phylogenetic studies.
Resumo:
A method of transformation field is developed to estimate the effective properties of graded composites whose inclusions have arbitrary shapes and gradient profiles by means of a periodic cell model. The boundary-value problem of graded composites having arbitrary inclusion shapes is solved by introducing the transformation field into the inclusion region. As an example, the effective dielectric response of isotropic graded composites having arbitrary shapes and gradient profiles is handled by the transformation field method (TFM). Moreover, TFM results are validated by the exact solutions of isotropic graded spherical inclusions having a power-law profile and good agreement is obtained in the dilute limit. Furthermore, it is found that the inclusion shapes and the parameters of the gradient profiles can have profound effect on the effective properties of composite systems at high concentration of inclusions.