114 resultados para Metallic fibres
Resumo:
Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.
Resumo:
To uncover the physical origin of shear-banding instability in metallic glass (MG), a theoretical description of thermo-mechanical deformation of MG undergoing one-dimensional simple shearing is presented. The coupled thermo-mechanical model takes into account the momentum balance, the energy balance and the dynamics of free volume. The interplay between free-volume production and temperature increase being two potential causes for shear-banding instability is examined on the basis of the homogeneous solution. It is found that the free-volume production facilitates the sudden increase in the temperature before instability and vice versa. A rigorous linear perturbation analysis is used to examine the inhomogeneous deformation, during which the onset criteria and the internal length and time scales for three types of instabilities, namely free-volume softening, thermal softening and coupling softening, are clearly revealed. The shear-banding instability originating from sole free-volume softening takes place easier and faster than that due to sole thermal softening, and dominates in the coupling softening. Furthermore, the coupled thermo-mechanical shear-band analysis does show that an initial slight distribution of local free volume can incur significant strain localization, producing a shear band. During such a localization process, the local free-volume creation occurs indeed prior to the increase in local temperature, indicating that the former is the cause of shear localization, whereas the latter is its consequence. Finally, extension of the above model to include the shear-induced dilatation shows that such dilatation facilitates the shear instability in metallic glasses.
Resumo:
We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.
Resumo:
Through a systematical analysis of the elastic moduli for 137 metallic glasses (MGs) and 56 polycrystalline metals, we use a simple model developed by Knuyt et al. [J. Phys. F: Met. Phys. 16 (1986) p.1989; Phil. Mag. B 64 (1991) p.299] based on a Gaussian distribution for the first-neighbor distance to reveal the short-range-order (SRO) structural conditions for plasticity of MGs. It is found that the SRO structure with dense atomic packing, large packing dispersion and a significant anharmonicity of atomic interaction within an MG is favorable for its global plasticity. Although these conditions seem paradoxical, their perfect matching is believed to be a key for designing large plastic bulk MGs not only in compression but also in tension.
Resumo:
Taking shear-induced dilatation into consideration in shear transformation zone (STZ) operations, we derive a new yield criterion that reflects the pressure sensitivity in plastic flow in metallic glasses (MGs), which agrees well with experiments. Furthermore, an intrinsic theoretical correlation between the pressure sensitivity coefficient and the dilatation factor is revealed. It is found that the pressure sensitivity of plastic flow of MGs originates in the dilatation of microscale STZs.
Resumo:
Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.
Resumo:
We analyze the electromagnetic spatital distributions and address an important issue of the transmission properties of spherical transverse-electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered hollow metallic waveguide in detail. Explicit analytical expressions for the spatital distributions of electromagnetic field components, attenuation constant, phase constant and wave impedance are derived. Accurate eigenvalues obtained numerically are used to study the dependences of the transmission properties on the taper angle, the mode as well as the length of the waveguide. It is shown that all modes run continuously from a propagating through a transition to an evanescent region and the value of the attenuation increases as the distance from the cone vertex and the cone angle decrease. A strict distinction between pure propagating and pure evanescent modes cannot be achieved. One mode after the other reaches cutoff in the tapered hollow metallic waveguide as the distance from the cone vertex desreases. (C) 2008 Optical Society of America
Resumo:
An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.8dB/cm. The pump threshold is about 50 mW at the wavelength of 1534 nm, and below 70 mW at 1550 nm. The gain linewidth of the Er3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.
Resumo:
We report on the fabrication of two kinds of large core area Nd3+ doped silicate glass photonic crystal fibres, and demonstration of the fibre waveguiding properties. The measured minimum loss of one kind of fibres is 2.5 db/m at 660nm. The fibres sustain only a single mode at least over the wavelength range from 660nm to 980nm.
Resumo:
On the basis of the Boltzmann equation, the authors propose a model that includes scattering from both film surfaces and grain boundaries, and have studied the quasiclassical electrical transport in metallic films. The in-plane electric conductivity of metallic films is obtained, and the theoretical results are shown to be in good agreement with experimental data. We also give the relation between temperature coefficient of resistivity and thickness of metallic films and make a comparison with experiment. <(C)> 2004 American Institute of Physics.
Surface plasmon resonance transmission filters at 1053 nm based on metallic grating with narrow slit
Resumo:
Metallic gratings with narrow slits can lead to special optical properties such as strongly enhancing the transmission and considerably strengthening the polarized effect. A narrow-band filter suitable for application in optical communication is designed by sandwiching a metallic grating between two identical dielectric films. The maximum transmission can reach 96% after optimizing the parameters of films and grating at a central wavelength of 1053 nm. It is the first time, to our knowledge, that such high transmission has been reported since the discovery of the extraordinarily high transmission through periodic holes or slits; moreover, the extremely polarized effect is also found in P mode of this symmetric grating.