268 resultados para Membrane Computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By employing poly(ethylene glycol) (PEG) shielding and a polymer cushion to achieve air stability of the lipid membrane, we have analyzed PEG influence on dried membranes and the interaction with cholesterol. Small unilamellar vesicles (SUVs) formed by the mixture of 1,2-dimyristoylphosphatidylcholine (DMPC) with different molar fraction of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG(2000)) adsorb and fuse into membranes on different polymer-modified silicon dioxide surfaces, including chitosan, poly(L-lysine) (PLL), and hyaluronic acid, Dried membranes arc further examined by ellipsometer and atomic force microscopy (AFM). Only chitosan can support a visible and uniform lipid array. The thickness of dry PEGylated lipid membrane is reduced gradually as the molar fraction of PEG increases. AFM scanning confirms the lipid membrane stacking for vesicles containing low PEG, and only a proper amount of PEG can maintain a single lipid hi lover; however, the air stability of the membrane will be destroyed if overloading. PEG. Cholesterol incorporation can greatly improve the structural stability of lipid membrane, especially for those containing high molar fraction of PEG. Different amounts of cholesterol influence the thickness and surface morphology of dried membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports that the transmission of O6+ ions with energy of 150keV through capillaries in an uncoated Al2O3 membrane was measured, and agreements with previously reported results in general angular distribution of the transmitted ions and the transmission fractions as a function of the tilt angle well fitted to Gaussian-like functions were observed. Due to using an uncoated capillary membrane, our c is larger than that using a gold-coated one with a smaller value of E-p/q, which suggests a larger equilibrium charge Q(infinity) in our experiment. The observed special width variation with time and a larger width than that using a smaller E-p/q were qualitatively explained by using mean-field classical transport theory based on a classical-trajectory Monte Carlo simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dry/wet spinning process, asymmetric cellulose hollow fiber membranes (CHFM) were prepared from a dope composed of cellulose/N-methylmorpholine-N-oxide/water. The formation mechanism for the finger-like macrovoids at the inner portion of as-spun fibers was explained. Naturally drying and three solvent exchange drying methods were tried to investigate their influence on morphology and properties of CHFM. It was found that the ethanol-hexane exchange drying was an appropriate method to minimize morphology change of the as-spun CHFM, whereas the naturally drying caused the greatest shrinkage of the fibers that made the porous membrane become dense. The result, CHFM from ethanol-hexane exchange drying performed the highest gas permeation rate but gas permeation of the naturally dried membrane could not be detectable. The resultant CHFM from the ethanol-hexane exchange drying also showed acceptable, mechanical properties, thus it was proposed to be an appropriate method for gas separation purpose. The experimental results supported the proposed drying mechanism of CHFM. The free water would evaporate or be replaced by a solvent that subsequently would evaporate but the bonded water would remain in the membrane. What dominated the changes of membrane morphology during drying should be. the molecular affinities of cellulose-water, water-solvent and solvent-solvent. (C) 2004 Elsevier B.V. All rights reserved.