81 resultados para Manganiti, anisotropia magnetica, MOKE, spintronica, LSMO, half-metal
Resumo:
A liquid bridge of a floating half zone consisting of liquid mercury sealed in a glass tube with nitrogen atmosphere was used for the experiment of thermocapillary convection with a low Prandtl number liquid. A non-contacted diagnostic method was developed to monitor the surface flow and the surface oscillation. A growing surface film (or skin) is a crucial source to suppress thermocapillary convection, and is discussed in this paper. For the case of a mercury Liquid bridge, the critical Marangoni number was obtained as 900, and the oscillatory frequency was around 5 Hz.
Resumo:
The g-jitter effects on the thermocapillary convection in liquid bridge of floating half zone were studied by numerical simulation for unsteady and axi-symmetric model in the cylindrical coordinate system. The g-jitter field was given by a steady microgravity field in addition to an oscillatory low-gravity field, and the effects on the flow field, temperature distribution and free surface deformation were analyzed numerically.
Resumo:
In the present paper, the coordinated measurements of the temperature profile inside the liquid bridge and the boundary variation of Free surface, in addition to other quantities, were obtained in the same time for the half floating zone convection. The results show that the onset of free surface oscillation is earlier than the one of temperature oscillation during the increasing of applied temperature difference, and the critical Marangoni numbers, defined usually by temperature measurement, are larger than the one defined by free surface measurement, and the difference depends on the volume of liquid bridge. These results induce the question, ''How to determine experimentally the critical Marangoni number?'' Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.
Resumo:
Coordinated measurement of temperature, velocity and free surface oscillation were obtained by using the drop shaft facility for microgravity experiments of half floating zone convection. The ground-based studies gave transition from steady to oscillatory convection for multi-quantities measurement.
Resumo:
The g-jitter influence on thermocapillary convection and critical Marangoni number in a liquid bridge of half-floating rone was discussed in the low frequency range of 0.4 to 1.5 Hz in a previous paper. This paper extended the experiments to the intermediate frequency range of 2 to 18 Hz, which htrs often been recorded as vibration environment of spacecrafts. The experiment was completed on the deck of a vibration machine, which gave a periodical applied acceleration to simulate the effects of g-jitter. The experimental results in the intermediate frequency range are different from that in the low frequency range. The velocity field and the shape of the free surface have periodical fluctuations in response to g-jitter. The amplitude of the periodical varying part of the temperature response decreases obviously with increasing frequency of g-jitter and vanishes almost when the frequency of g-jitter is high enough. The critical Marangoni number is defined to describe the transition from a periodical convection in response to g-jitter to an oscillatory convection due to internal instability, and will increase with increasing g-jitter frequency. According to the spectral analysis, it can be found that the oscillatory part of temperature is a superposition of two harmonic waves if the Marangoni number is larger than a critical value.
Resumo:
Projecting an orthographical grating mask (20pl/mm) on the surface of a small liquid bridge and receiving the reflected distortion image, one can calculate out reversely the shape of free surface of a liquid bridge. In this way we measured the surface shape of a small floating zone and the two-dimensional deformation of its vibration. The mechanism of thermocapillary oscillatory convection and the three-dimensional variation of the free surface are revealed experimentally. The principle for space experiment has been studied in our laboratory.
Resumo:
Free surface deformations of thermocapillary convection in a small liquid bridge of half floating-zone are studied in the present paper. The relative displacement and phase difference of free surface oscillation are experimentally studied, and the features of free surface oscillation for various applied temperature differences are obtained. It is discovered that there is a sort of surface waves having the character of small perturbation, and having a wave mode of unusually large amplitude in one corner region of the liquid bridge.
Resumo:
A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.
Resumo:
Fatigue tests were performed using a purpose designed triangular shaped specimen to investigate the initiation and propagation of short fatigue cracks in a weld metal. It was observed that short fatigue cracks evolved from slip bands and were predominantly within ferrite grains. As the test progressed, the short crack density increased with minor changes in crack length. The growth of short cracks, in the early stage resulted mainly from coalescence with other existing cracks. The mechanism of short crack behaviour is discussed.
Resumo:
Low-energy laser-heating techniques are widely used in engineering applications such as, thinfilm deposition, surface treatment, metal forming and micro-structural pattern formation. In this paper,under the conditions of ignoring the thermo-mechanical coupling, a numerical simulation on the spatialand temporal temperature distribution in a sheet metal produced by the laser beam scanning in virtue of thefinite element method is presented. Both the three-dimensional transient temperature field and thetemperature evolution as a function of heat penetrating depth in the metal sheet are calculated. Thetemperature dependence of material properties was taken into account. It was shown that, after taking thetemperature dependence of the material absorbance effect into consideration, the temperature change ratealong the scanning direction and the temperature maximum were both increased.
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by "GAMESS", and the rest atoms are treated as MM part calculated by "TINKER". The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(100) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the in-tidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.