75 resultados para MEV RANGE 10-100
Resumo:
近几年来,随着水体地球化学研究的逐步深入,人们发现表生水体中许多微量元素利同位素的水体地球化学行为都与水体颗粒物的行为密切相关,水/粒相互作用过程越来越引起研究者的关注。河口是连接河流与海洋两大不同性质水体的过渡地带,其水体的理化性质及化学组成在短时内会发生显著变化,使得河口环境成为研究表生水体水/粒相互作用过程的优势场所。本文首先对稀土和重金属元素以及锶同位素等化学组分在世界河口水体混合过程中的地球化学行为进行了综述。并在综述和调研的基础上,选择世界大河之一的长江口作为研究区域,通过对水体溶解相、酸溶相、和颗粒物中稀土和重金属元素以及水体锶同位素地球化学的研究,系统了解了长江口表层水体中微量元素和同位素的迁移转化规律,并对发生在河口区的水与颗粒物以及水与沉积物的相互作用过程进行了分析,并得出以下初步结论:1.在长江口,表层水体的混合不是以均匀方式进行的,盐度及主离子浓度在空间剖面上显示非连续性变化。这是由于长江口属于潮汐分汊河口,儿股径流相互穿插所致。但在盐度剖面上,主离子浓度都随盐度增加而线性变化,显示明显的化学保守性。2.长江口水体颗粒物的含量和pH值都比较高,使得溶解态物质的迁移转化规律相对特殊,尤其是水/粒相互作用过程比较强烈。3.长江及长江口水体的~(87)Sr/~(86)Sr比值(0.7105)相对较低,而Sr元素浓度(约150ppb)相对较高。Sr及~(87)Sr/~(86)Sr在长江口水体混合过程中显示保守行为,基本不受水/粒相互作用及其它地球化学过程的影响,只与水体端员的化学组成有关,所以锶同位素是河口研究中确定水体端员的良好指标。4.本文首次测定了长江口表层水体中溶解态REE的浓度。利世界大多数河口相比,长江口溶解态REE的浓度相对较低,仅为0.1~10ppt左右,比其它河口低了近10到100倍。溶解态REE在长江门盐度剖面上的分布规律也比较特殊,显示了自低盐度向高盐度的整体升高趋势,而不是通常的随盐度降低趋势。5.溶解态重金属元素Fe、Co、Ni、Cu、Pb、Zn、Cd等在长江口表层水体混合过程中显示了各不相同的地球化学行为。受胶体絮凝过程的影响,溶解态Fe利Zn的浓度在河口低盐度区显著降低;溶解态Ni和Cu则显示住低盐度区的强烈解吸过程;Co和Pb的行为主要受水体颗粒物吸附作出的控制;溶解态Cd显示随盐度增加的全过程解吸行为。6.本文对江口表层水体中酸溶态利颗粒态微量元素的浓度也进行了测定。结果显示,酸溶态微量元素的行为主要受水体颗粒物行为的控制,但在一定程度上又受到盐度等水化学因素的影响,所以用酸溶态微量元素的行为讨论水/粒相互作用过程比颗粒物全样更为有效。颗粒态微量元素在水体混合过程中的行为相对惰性,除受粒度效应的影响外,基本不受其它物化参数及水/粒相互作用过程的影响,只与其物质来源有关。7.在江口表层水体中,发生着广泛的水/粒相互作用以及水与沉积物相互作用过程。住河口低盐度区以胶体絮凝作用为主,但同时又因离子交换反应而使某些元素(Cu和Ni)发生解吸过程。在河口中高盐度区广泛发生有沉积物再悬浮和颗粒物解吸及解聚过程,从而造成酸溶态及部分溶解态微量元素浓度的升高。8.水/粒相互作用过程明显影响到微量元素长江的入海通量,对解释东中国海及西太平洋的微量元素及同位素地球化学也有比较重要的意义。
Resumo:
Acceleration of an initially moving electron by a copropagation ultra-short ultra-intense laser pulse in vacuum is studied. It is shown that when appropriate laser pulse parameters and focusing conditions are imposed, the acceleration of electron by ascending front of laser pulse can be much stronger compared to the deceleration by descending part. Consequently, the electron can obtain significantly high net energy gain. We also report the results of the new scheme that enables a second-step acceleration of electron using laser pulses of peak intensity in the range of 10(19)-10(20) W mu m(2)/cm(2). In the first step the electron acceleration from rest is limited to energies of a few MeV, while in the second step the electron acceleration can be considerably enhanced to about 100 MeV energy.
Resumo:
The first report of a short wavelength infrared detector based on type II InAs/GaSb superlattices is presented. Very short period superlattices containing InAs (2ML)/GaSb (8ML) superlattices (SLs) were grown by molecular-beam epitaxy on GaSb substrates. The photoluminescence showed a cut-off wavelength at 2.1 mu m at 10 K and 2.6 mu m at 300 K. Room-temperature optical transmittance spectra shows obvious absorption in InAs (2ML)/GaSb (8ML) SL in the range of 450-680 meV, i.e. 1.8-2.7 mu m. The cut-off wavelength moved from 2.3 mu m to 2.6 mu m with temperature rising from 77 K to 300 K in photoresponse spectra. The blackbody response R-v exponentially decreased as a function of 1/T in two temperature sections (130-200 K and 230-300 K). The blackbody detectivity D-bb(center dot) was beyond 1 x 10(8) cmHz(1/2)/W at room temperature. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence measurements have been performed on cubic GaN films with carrier concentration as low as 3 x 10(13) cm(-3). From the temperature and excitation intensity dependence, the emission lines at 3.268, 3.150 and 3.081 eV were assigned to the excitonic, donor-acceptor pair, and free-to-acceptor transitions, respectively Additionally, we observed two additional emission lines at 2.926 and 2.821 eV, and suggested that they belong to donor-acceptor pair transitions. Furthermore, from the temperature dependence of integral intensities, we confirmed that three donor-acceptor pair transitions (3.150, 2.926, and 2.821 eV) are from a common shallow donor to three different accepters. The excitonic emission at 3.216 eV has a full-width-at-half-maximum value of 41 meV at room temperature, which indicates a good optical quality of our sample.
Resumo:
We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).
Resumo:
High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.
Resumo:
In this report we present the effects of 1 MeV-electron irradiation on i a-Si:H films and solar cells. It is observed that in the dose range of 1.4-8.4 x 10(15) cm(-2) the defect creation has not reached its saturation level and the metastable defects caused by the irradiation cannot be completely removed by a two hour annealing at 200 degrees C for i a-Si:H films or at 130 degrees C for a-Si:H solar cells. The results may be understood in terms of a model based on two kinds of metastable defects created by 1 MeV-electron irradiation.
Resumo:
The diamond (100) facets deposited at initial 1.0% CH4 have been investigated using high resolution electron energy loss spectroscopy (HREELS). The diamond (100) facets grown at 800-degrees-C are terminated by CH2 radicals, and there is no detectable frequency shift compared with the characteristic frequencies of molecular subgroup CH2. Beside the CH2 vibration loss, CH bend loss (at 140 meV) of locally monohydrogenated dimer is detected for the diamond (100) facets grown at 1000-degrees-C. Dosing the (100) facets grown at 800-degrees-C with atomic hydrogen at 1*10(-6) mbar, the loss peak at 140 meV appears. It is suggested that there are enough separately vacant sites and uniformly dispersed monohydrogenated dimers on (100) facets. This structure relaxes the steric repulsion between the adjacent hydrogen atoms during the diamond (100) surface growth.
Resumo:
The effect of thermal annealing on the Raman spectrum of Si0.33Ge0.67 alloy grown on Si (100) by molecular beam epitaxy is investigated in the temperature range of 550-800 degrees C. For annealing below 700 degrees C, interdiffusion at the interface is negligible and the residual strain plays the dominant role in the Raman shift. The strain-shift coefficients for Si-Ge and Ge-Ge phonon modes are determined to be 915 +/- 215 cm(-1) and 732 +/- 117 cm(-1), respectively. For higher temperature annealing, interdiffusion is significant and strongly affects the Raman shift and the spectral shape.
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multilayers with a structure of Si/[Fe(10 nm)/CU(10 nm)](5) were deposited on Si(100) substrates and then irradiated at room temperature by using 2-MeV Xe20+. The modifications of the multilayers were characterized using a depth profile analysis of the Auger electron spectroscopy (AES) data and the evolution of crystallite structures of the multilayers were analyzed by using X-ray diffraction (XRD). The AES depth profiles indicated that de-mixing of the Fe and the Cu layers was observed at low ion fluences, but inter-mixing of the Fe and the Cu layers was found at high ion fluences and destroyed the layered structure of the multilayers. The obtained XRD patterns showed that, after irradiation by 2-MeV Xe20+ at; 2 x 10(16) ions/cm(2), the peaks of the multilayers related to a Cu-based fee solid solution and an Fe-based bee solid solution phase became visible, which implied that the inter-mixing at the Fe/Cu interface resulted in the formation of new phases. A possible mechanism of modification in the Fe/Cu multilayers induced by ion irradiation is briefly discussed.