208 resultados para MANDIBULAR ANGLE FRACTURE
Resumo:
This paper presents an asymptotic analysis of the near-tip stress and strain fields of a sharp V-notch in a power law hardening material. First, the asymptotic solutions of the HRR type are obtained for the plane stress problem under symmetric loading. It is found that the angular distribution function of the radial stress sigma(r) presents rapid variation with the polar angle if the notch angle beta is smaller than a critical notch angle; otherwise, there is no such phenomena. Secondly, the asymptotic solutions are developed for antisymmetric loading in the cases of plane strain and plane stress. The accurate calculation results and the detailed comparisons are given as well. All results show that the singular exponent s is changeable for various combinations of loading condition and plane problem.
Resumo:
Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.
Resumo:
For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.
Resumo:
Based on the local properties of a singular field, the displacement pattern of an isoparametric element is improved and a new formulated method of a quasi-compatible finite element is proposed in this paper. This method can be used to solve various engineering problems containing singular distribution, especially, the singular field existing at the tip of cracks. The singular quasi-compatible element (SQCE) is constructed. The characteristics of the elements are analysed from various angles and many examples of calculations are performed. The results show that this method has many significant advantages, by which, the numerical analysis of brittle fracture problems can be solved.
Resumo:
This paper deals with fracture analyses in 3-dimensional bodies containing a surface crack. A general solution of stress-strain fields at crack tip is proposed. Based on the stress-strain fields obtained, a high-order 3-dimensional special element is established to calculate the stress intensity factors in a plate with a surface crack. The variation of stress intensity factors with geometric parameters is investigated.
Resumo:
presented in a general form where more reasonable relations for the two-phase
Resumo:
boundary-layer flows, the skin friction and wall heat-transfer are higher and the
Resumo:
thermal conduction, and acoustic wave propagation are included. This
Resumo:
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.