85 resultados para Lie algebras.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

R-phycoerythrin, a light-harvesting protein in some marine algae, and can be widely used in medicine, was isolated and purified from a red alga, Palmaria palmata (Lannaeus) Kuntze, using the streamline column (expanded bed adsorption) combined with ion-exchange chromatography. Because the crude extract was applied to the column upwardly, the column would not be blocked by polysaccharides usually very abundant in the extract of marine alga, this kind of blockage could hardly lie overcome in ordinary chromatographic column. After applying the crude extract containing 0.5 mol/L (NH4)(2)SO4, (NH4)(2)SO4 solution of different concentrations (0.2 mol/L, 0.1 mol/L and 0.05 mol/L) was used to elute the column downwardly and the eluates were collected and desalted. The desalted eluates were then applied onto all ion-exchange chromatographic column loaded with Q-sepharose for further purification of the R-phycoerythrin. Through these two steps, the purity (OD565/OD280) of the R-phycoerythrin from P. palmata was up to 3.5, more than 3.2, the commonly accepted criterion for purity, and the yield of the purified R-phycoerythrin could reach 0.122 mg/g of frozen P. palmata, much higher than that of phycobiliproteins purified with the previous methods. The result indicated that the cost of R-phycoerythrin will drop down with the method reported in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a new species of Metrodoridae, Rhopalotettix taipeieiisis sp. nov. , collected from (lie (arm of Taiwan University in Taipei, Taiwan, and provides a key to the 6 species of the genus Rhopnloteltix Hancock, 1910. Type specimens are deposited in the Department ol Entomology, Taiwan University, Taipei, Taiwan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory researches of prediction about stratigraphic filtering in complex condition are carried out, and three key techniques are put forward in this dissertation. Theoretical aspects: The prediction equations for both slant incidence in horizontally layered medium and that in laterally variant velocity medium are expressed appropriately. Solving the equations, the linear prediction operator of overlaid layers, then corresponding reflection/transmission operators, can be obtained. The properties of linear prediction operator are elucidated followed by putting forward the event model for generalized Goupillaud layers. Key technique 1: Spectral factorization is introduced to solve the prediction equations in complex condition and numerical results are illustrated. Key technique 2: So-called large-step wavefield extrapolation of one-way wave under laterally variant velocity circumstance is studied. Based on Lie algebraic integral and structure preserving algorithm, large-step wavefield depth extrapolation scheme is set forth. In this method, the complex phase of wavefield extrapolation operator’s symbol is expressed as a linear combination of wavenumbers with the coefficients of this linear combination in the form of the integral of interval velocity and its derivatives over depth. The exponential transform of the complex phase is implemented through phase shifting, BCH splitting and orthogonal polynomial expansion. The results of numerical test show that large-step scheme takes on a great number of advantages as low accumulating error, cheapness, well adaptability to laterally variant velocity, small dispersive, etc. Key technique 3: Utilizing large-step wavefield extrapolation scheme and based on the idea of local harmonic decomposition, the technique generating angle gathers for 2D case is generalized to 3D case so as to solve the problems generating and storing 3D prestack angle gathers. Shot domain parallel scheme is adopted by which main duty for servant-nodes is to compute trigonometric expansion coefficients, while that for host-node is to reclaim them with which object-oriented angle gathers yield. In theoretical research, many efforts have been made in probing into the traits of uncertainties within macro-dynamic procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maichen Depression lie between Leizhou Peninsula and Qiongzhou Strait. Oil and gas have been discovered in Weixinan Depression, Wushi Depression and Fushan Depression, which pertain to a same basin — North Sea Basin along with Maichen Depression.Jiangsu Oil started exploration at 2002. The first well began to drill at November, 2004 after gravity survey, electric method prospecting and 2D seismic exploration had been finished. Generating rock and hydrocarbon shows have been verified by the drilling. Low yield oil stream has been tested. And we started 3D seismic exploration at November, 2005. My thesis topic came from the actual needs of our exploration in the Maichen Depression. In the thesis, I give emphasis to analyse the own seismic geologic conditions of Maichen Depression. By real tests, we choosed the means to overcome or weaken the unfavorably impress owing to the own coditions in Maichen Depression. Finally, we obtained the usable seismic data. 1. Owing to the multiphase eruptive rock during the Quaternary Period, the near surface layers are very inhomogeneous. By simultaneous testing at same point with short refraction, uphole surveys of radial source and of surface source, the most appropriate method had been sorted out. Radial source uphole survey has been regarding the best practicable means in the complex area. Accurate surficial geology was very helpful to choosing of acquirement means and parameters. Basically the appropriate method of seismic acquirement has been built at Maichen area. 2. The seismic primary data has many, very strong and complex noise. By noise characteristic analysis in different domain, many means of denoising had been paralleled individual and joint application researched. As a result, the pre-stack multidomain joint denoise flow was the appropriate method. It can improve the seismic signal-to-noise ratio. 3. The problem of seismic static correction at Maichen Depression is very conspicuous. Many static correction methods had been tested individual and joint researched. The seismic data quality has been improved after choosing the appropriate combination of static correction flows. 4. Although the above-mentioned process are resultful, the seismic profile quality is just passable. Some reflector continuity and fault zone imagery are ambiguity. So it was the useful method to reduce the structural ambiguity during seismic interpretation that built-up geologic model in accord with real geologic character by areal structure study upon backbone seismic profiles. In the same way, traps have been assessed and drill targets have been selected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the practical seismic profile multiple reflections tend to impede the task of even the experienced interpreter in deducing information from the reflection data. Surface multiples are usually much stronger, more broadband, and more of a problem than internal multiples because the reflection coefficient at the water surface is much larger than the reflection coefficients found in the subsurface. For this reason most attempts to remove multiples from marine data focus on surface multiples, as will I. A surface-related multiple attenuation method can be formulated as an iterative procedure. In this essay a fully data-driven approach which is called MPI —multiple prediction through inversion (Wang, 2003) is applied to a real marine seismic data example. This is a pretty promising scheme for predicting a relative accurate multiple model by updating the multiple model iteratively, as we usually do in a linearized inverse problem. The prominent characteristic of MPI method lie in that it eliminate the need for an explicit surface operator which means it can model the multiple wavefield without any knowledge of surface and subsurface structures even a source signature. Another key feature of this scheme is that it can predict multiples not only in time but also in phase and in amplitude domain. According to the real data experiments it is shown that this scheme for multiple prediction can be made very efficient if a good initial estimate of the multiple-free data set can be provided in the first iteration. In the other core step which is multiple subtraction we use an expanded multi-channel matching filter to fulfil this aim. Compared to a normal multichannel matching filter where an original seismic trace is matched by a group of multiple-model traces, in EMCM filter a seismic trace is matched by not only a group of the ordinary multiple-model traces but also their adjoints generated mathematically. The adjoints of a multiple-model trace include its first derivative, its Hilbert transform and the derivative of the Hilbert transform. The third chapter of the thesis is the application for the real data using the previous methods we put forward from which we can obviously find the effectivity and prospect of the value in use. For this specific case I have done three group experiments to test the effectiveness of MPI method, compare different subtraction results with fixed filter length but different window length, invest the influence of the initial subtraction result for MPI method. In terms of the real data application, we do fine that the initial demultiple estimate take on a great deal of influence for the MPI method. Then two approaches are introduced to refine the intial demultiple estimate which are first arrival and masking filter respectively. In the last part some conclusions are drawn in terms of the previous results I have got.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Otindag sandy land and the Guyuan region of Hebei Province lie in the agro-pastoral zone, where sandy desertification is serious. So they are typical for us to study on. In this paper, detail investigation were made on the Remote Sensing, Hydrochemistry, Chronology, grain size analyzing of research region to monitor sandy desertification and environmental background. The main conclusions are presented as following: 1. According to the diverse natural condition, the research area is divided into three types as sandy land desertification, cultivated land desertification and desertification reflected by lake change. The monitoring result of the first type shows that the main performance way of the sandy desertification in Otindag sandy land is that (1) the expansion of both the shifting dune and the half fixed sandy dune, (2) the reduce of the fixed sandy dune. While the result of the second type shows (1) the desertification land in the Guyuan region has first increasing then reducing change for about 30 years. (2) The sand mainly concentrates west of the research area and small part of wind-drift sand distributes northeast the research area with the spot shape. (3) The meadow area increases obviously. As far as the third type, the Dalai Nur lake area occurs first expanding then reducing change and the wind-drift sand around the lake first reduces then increases. 2. The land cover of the different types change with the same law. It is worth notice that the lake area changes oppositely with that of the wind-drift sand. 3. For about 5,000 a B.P. -2800 a B.P., the well developed palaeosols emerged. After that, three layer palaeosols were founded in the profile of Otindag sandy land. The analyses of grain size show that the sand grains of the south were coarser than that of the north. The sand in the north and middle were well sorted, while the south poor sorted. 4. Both the natural and human impact on the process of sandy desertification. On this research result, different regions have different influences. So the measures to improve sandy desertification should be choosed respectively.