84 resultados para Lennard-jones Mixtures
Resumo:
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadienestyrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Miscibility in blends of three styrene-butadiene-styrene and one styrene-isoprene-styrene triblock copolymers containing 28%, 30%, 48%, and 14% by weight of polystyrene, respectively, with poly(vinyl methyl ether) (PVME) were investigated by FTIR spectroscopy and differential scanning calorimetry (DSC). It was found from the optical clarity and the glass transition temperature behavior that the blends show miscibility for each kind of triblock copolymers below a certain concentration of PVME. The concentration range to show miscibility becomes wider as the polystyrene content and molecular weight of PS segment in the triblock copolymers increase. From the FTIR results, the relative peak intensity of the 1100 cm-1 region due to COCH3 band of PVME and peak position of 698 cm-1 region due to phenyl ring are sensitive to the miscibility of SBS(SIS)/PVME blends. The results show that the miscibility in SBS(SIS)/PVME blends is greatly affected by the composition of the copolymers and the polystyrene content in the triblock copolymers. Molecular weights of polystyrene segments have also affected the miscibility of the blends. (C) 1995 John Wiley & Sons, Inc.
Resumo:
A statistical thermodynamics theory of polydisperse polymer blends based on a lattice model description of a fluid is formulated. Characterization of a binary polydisperse polymer mixture requires a knowledge of the pure polymer system and the interaction energy. It is assumed that the intrinsic and interactive properties of polymer (for example, T*, P*, rho*, and epsilon(ij)*) are independent of molecular size. Thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid polymer parameters and the binary interaction energies. Thermodynamic stability criteria for the phase transitions of a binary mixture are shown. The binodal and spinodal of general binary systems and of special binary systems are discussed.
Resumo:
The compatibility and crystallization behaviour of the mixtures of poly (tetrahydrofuran-methyl methacrylate) diblock copolymer (PTHF-b-PMMA) with polyvinyl chloride has been studied. We found that the compatibility of these blends, in which there is special interaction between the homopolymer and the PMMA block of the copolymer, is much better than that of the AB/A type blends; and that the crystallization rate and crystallinity of PTHF microdomain changed greatly due to the swollen by PVC homopolymer. In this paper, these changes in cryatallization are well explained according to the theories of block copolymer blends and the density gradient model presented by JIANG Ming.
Resumo:
The crystallization kinetics in mixtures of poly(epsilon-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) has been investigated as the function of composition and crystallization temperature. The isothermal growth rates of PCL spherulites decrease with increasing concentration of SAN. Because of the miscibility of PCL/SAN mixtures, the radial growth rates of the spherulites are described by a kinetic equation including the interaction parameter and the free energy for the formation of crystal nuclei. The interaction parameter obtained from the fitting of the kinetic equation with experimental data is in good agreement with that obtained from melting point depression. Folding surface free energies decrease with the increase of SAN concentration. In light of these results, it is suggested that, for the PCL/SAN mixtures, the noncrystallizable SAN polymer reduces the mobility of crystallizable PCL polymer so that the growth rates decrease with the increase of noncrystallizable component fraction.
Resumo:
Dynamic scaling and fractal behaviour of spinodal phase separation is studied in a binary polymer mixture of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). In the later stages of spinodal phase separation, a simple dynamic scaling law was found for the scattering function S(q,t):S(q,t) approximately q(m)-3S approximately (q/q(m)). The possibility of using fractal theory to describe the complex morphology of spinodal phase separation is discussed. In phase separation, morphology exhibits strong self-similarity. The two-dimensional image obtained by optical microscopy can be analysed within the framework of fractal concepts. The results give a fractal dimension of 1.64. This implies that the fractal structure may be the reason for the dynamic scaling behaviour of the structure function.
Resumo:
The dynamics of phase separation in a binary polymer blend of poly(vinyl acetate) with poly(methyl methacrylate) was investigated by using a time-resolved light-scattering technique. In the later stages of spinodal decomposition, a simple dynamic scaling law was found for the scattering function S(q, t)(S(q, t) approximately I(q, t)): S(q, t)q(m)-3 S approximately (q/q(m)). The scaling function determined experimentally was in good agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X8) for critical concentration, and approximately in agreement with that predicted by Furukawa, S approximately (X) approximately X2/(3 + X6) for non-critical mixtures. The light-scattering invariant shows that the later stages of the spinodal decomposition were undergoing domain ripening.
Resumo:
The structure of the PCL spherulite in poly(epsilon-caprolactone)/poly(styrene-co-acrylonitrile) (PCL/SAN) blends was investigated by optical microscopy and small angle light scattering. The spherulite structure with a Maltese cross has been observed in pure PCL. Similar PCL/SAN blends exhibited not only spherulites with a Maltese cross, but also distinct extinction rings. The H(v) light scattering pattern especially caused diffraction rings in PCL/SAN blends but not in pure PCL. The spherical symmetry of spherulite PCL becomes more incomplete and the twist of the lamella becomes more irregular with increasing SAN content. It is found that the spherulite structure of PCL/SAN blends is dependent on the crystallization temperature and the concentration of SAN in PCL/SAN blends.
Resumo:
Thermally induced phase separation in the mixture of poly (methyl methacrylate) (PMMA) with poly(styrene-co-acrylonitite (SAN) has intern studied with pulsed nuclear magnetic resonance(NMR) in single spin-lattice retaxation time T-1 of the eornpatibl. mixture two T-1 corresponding to those of PM MA-rich and SAN-rich comairis. Meanwhile, both T-1 gradually changing with annealing time provides the direct evidence that the phase separation takes place with a decomposition mechanism. Diffusion coeffieient was to lac negative, indicating an uphal diffusion characteristics, The basic parameters governing its kinetics were estimated using NMR date which were in good agreement with those evaluated from time-resolved light scattering experiments for a 60/40(PMMA/SAN) mixture annealed at 180.0 degrees C.
Resumo:
Zhikong scallop Chlamys farreri(Jones et Preston) is an economically important species in China. Understanding its immune system would be of great help in controlling diseases. In the present study, an important immunity-related gene, the Lipopolysaccharide and Beta-1,3-glucan Binding Protein (LGBP) gene, was located on C. farreri chromosomes by mapping several lgbp-containing BAC clones through fluorescence in situ hybridization (FISH). Through the localization of various BAC clones, it was shown that only one locus of this gene existed in the genome of C. farreri, and that this was located on the long arm of a pair of homologous chromosomes. Molecular markers, consisting of eight single nucleotide polymorphism (SNPs) markers and one insertion-deletion (indel), were developed from the LGBP gene. Indel marker testing in an F1 family revealed slightly distorted segregation (p = 0.0472). These markers can be used to map the LGBP gene to the linkage map and assign the linkage group to the corresponding chromosome. Segregation distortion of the indel marker indicated genes with deleterious alleles might exist in the surrounding region of the LGBP gene.
Resumo:
Zhikong scallop (Chlamys farreri Jones et Preston 1904) is one of the most important aquaculture species in China. The development of a genetic linkage map would provide a powerful tool for the genetic improvement of this species. Amplified fragment length polymorphism (AFLP) is a PCR-based technique that has proven to be powerful in genome fingerprinting and mapping, and population analysis. Genetic maps of C. farreri were constructed using AFLP markers and a full-sib family with 60 progeny. A total of 503 segregating AFLP markers were obtained, with 472 following the Mendelian segregation ratio of 1:1 and 31 markers showing significant (P< 0.05) segregation distortion. The male map contained 166 informative AFLP markers in 23 linkage groups covering 2468 cM. The average distance between markers was 14.9 cM. The female genetic map consisted of 198 markers in 25 linkage groups spanning 3130 cM with an average inter-marker spacing of 15.8 cM. DNA polymorphisms that segregated in a 3:1 ratio as well as the AFLP markers that were heterozygous in both parents were included to construct combined linkage genetic map. Five shared linkage groups, ranging from 61.1 to 162.5 cM, were identified between the male and female maps, covering 431 cM. Amplified fragment length polymorphism markers appeared to be evenly distributed within the linkage groups. Although preliminary, these maps provide a starting point for the mapping of the functional genes and quantitative trait loci in C. farreri.
Resumo:
Zhikong scallop (Chlamys farreri) is an economically important aquaculture species in China; however, frequent mass mortality seriously affects the development of its industry. Genetic linkage map is useful for genetic improvement and selective breeding of C. farreri. Linkage maps were constructed using an intraspecific F-1 cross and amplified fragment length polymorphism (AFLP) markers. Thirty-two selected AFLP primer combinations produced 545 AFLP markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 166 were mapped to 19 linkage groups of the female framework map, covering a total of 1503.9 cM, with an average marker spacing of 10.2 cM; and 197 markers were assigned to 20 linkage groups of the male map, covering a total of 1630.7 cM, with 9.2 cM per marker. A sex-linked marker was mapped on the female map with zero recombination and a LOD of 27.3. The genetic length of C farreri genome was estimated as 1889.0 cM for the female and 1995.9 cM for the male. The coverage of the framework map was calculated as 79.6% for the female and 81.7% for the male. When the triplets and doublets were considered, the observed length of the map was calculated as 1610.2 cM with coverage of 85.2% for the female, and 1880.5 cM with coverage of 94.2% for the male. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map and mapping of economically important genes. (C) 2004 Published by Elsevier B.V.
Resumo:
Triploid scallops are valuable for aquaculture because of their enlarged adductor muscle, and tetraploids are important for the commercial production of triploids. We tested tetraploid induction in the zhikong scallop by inhibiting polar body I in newly fertilized eggs. The ploidy of resultant embryos was determined by chromosome counting at 2- to 4-cell stage and by flow cytometry thereafter. Embryos from the control groups were mostly diploids (79%), along with some aneuploids. Embryos from the treated groups were 13% diploids, 18% triploids, 26% tetraploids, 13% pentaploids, and 36% aneuploids. Tetraploids, pentaploids, and most aneuploids suffered heavy mortality during the first week and became undetectable among the larvae at day 14. Five tetraploids (2%) were found among a sample of 267 spat from one of the replicates, and none was detected at day 450. The adductor muscle of triploid scallops was 44% heavier (P < .01) than that of diploids, confirming the value of the triploid technology in this species.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.