63 resultados para Landsat satellites
Resumo:
以3S技术为手段,研究了藏羚在青海最主要分布区曲麻莱、治多和可可西里境内藏羚生境状况及其坡度、道路、和居民点对藏羚生境的影响。通过野外考察基本掌握了藏羚的生境的基本特征,取得了考察路线附近区域内藏羚分布的GPS数据及其具有对应的数量、地形地貌、生境类型、人类活动状况等属性数据的藏羚分布点图层。对研究地区LANDSAT TM / ETM+ 5(红)、4(绿)、3(蓝)波段组合影像进行非监督分类,共分出水体和裸岩、沼泽地、沙地、砾石地、低草地、中草地和高草地7种生境类型,将藏羚生境适宜等级划分为不适宜、较差、适宜和非常适宜,其中适宜等级和非常适宜等级的生境类型为藏羚适宜的生境。 首先,将藏羚分布点图层分别和遥感影像假彩色合成图像、坡度图层、道路图层、居民点图层进行叠加分析、距离查询等分析了遥感影像非监督分类的判图依据,设立了坡度、道路、居民点对藏羚生境影响强度的评价原则。然后,通过对研究地区遥感影像进行非监督分类分析研究了藏羚不同适宜程度的生境面积。通过坡度分析和地图查询分析研究了坡度对藏羚生境的影响。通过缓冲区分析研究了道路和居民点对藏羚生境的影响。最后将坡度、道路和居民点三个因素结合起来通过地图综合查询分析研究了这三个因素对藏羚生境的综合影响,并给出了研究地区藏羚不同适宜等级的生境面积。 主要的研究结果和结论如下: 1、从不同类型生境在研究地区中所占比例的趋势上看,治多地区和曲麻莱地区的植被要明显优于可可西里地区,这与整个研究地区从西北到东南地势逐渐降低、水热条件逐渐变好的趋势相一致,至少可以说,从食物条件来看,治多地区和曲麻莱地区比可可西里地区更适于藏羚的栖息。 在曲麻莱地区藏羚的潜在生境面积共26861 km2,占该地区总面积的69%;在治多地区藏羚的潜在生境面积共21617 km2,占该地区总面积的68%;在可可西里地区藏羚的潜在生境面积共26398 km2,占该地区总面积的54%。 2、根据藏羚分布点图层与坡度分析图层的地图查询分析,把藏羚的生境按坡度分为2类,坡度小于等于30度时为适宜生境,坡度大于30度时为不适宜生境。将研究地区坡度栅格图像(grid文件)和非监督分类结果栅格图像(grid文件)进行地图查询分析,结果表明,在整个研究地区坡度大于30度的生境面积所占的比例不到总面积的3%,坡度影响下研究地区藏羚适宜栖息的生境面积变化不大。考虑到坡度的影响,曲麻莱、治多和可可西里适合藏羚栖息的面积分别为26663 km2(68%)、21187 km2(66%)和26350 km2(54%)。 3、根据最近原则连接藏羚分布点图层与道路图层空间数据,通过Distance综合查询分析,把道路对藏羚的影响程度划分为4个等级:距离道路0-1000m,强烈影响;距离道路1000-2000m,中度影响;距离道路2000-3000m,轻度影响;距离道3000m以外,无影响。然后在ArcView GIS 3.2a软件环境的支持下对研究地区的道路图层分别做距离道路为1000m、2000m和3000m的缓冲区分析研究,则曲麻莱、治多和可可西里地区藏羚生境受道路累计影响的面积及其分别占各研究地区总面积的比例分别为20215 km2(51.80%)、19480 km2(61%)和4437 km2(9 %)。考虑道路对藏羚生境的影响,在治多和曲麻莱地区,由于道路的影响将使得藏羚生境大面积丧失,生境高度破碎化。 4、根据最近原则连接藏羚分布点图层与居民点图层空间数据,通过Distance综合查询分析,把居民点对藏羚的影响程度划分为4个等级:距离居民点0-3000m,强烈影响;距离居民点3000-6000m,中度影响;距离居民点6000-9000m,轻度影响;距离居民点9000m以外,无影响。然后在ArcView GIS 3.2a软件环境的支持下对研究地区的居民点图层分别做距离居民点距离为3000m、6000m和9000m的缓冲区分析。曲麻莱、治多和可可西里地区藏羚生境受居民点影响的面积及其分别占总面积的比例分别为11282 km2(29%)、15258 km2(48%)和3846 km2(8%)。从居民点对藏羚生境的影响看,由于居民点的影响使得治多和曲麻莱地区,尤其是治多地区,藏羚生境大面积丧失,生境高度破碎化。 5、人类活动(主要是道路和居民点)对藏羚生境适宜生境面积的影响是研究中主要的内容,鉴于道路和居民点对藏羚生境影响的评价原则分类方法一致,我们把道路和居民点对藏羚的影响程度合并为4个等级(距离道路0-1000m内或距离居民点0-3000m内,强烈影响;距离道路1000-2000m内或距离居民点3000-6000m内,中度影响;距离道路2000-3000m内或距离居民点6000-9000m内,轻度影响;距离道路3000m以外或距离居民点9000m以外,无影响,对道路和居民点相应距离的缓冲区分析图层进行合并等操作,测定曲麻莱、治多和可可西里地区藏羚生境受人类活动影响的面积及其占总面积的比例分别为21595 km2(55%)、22271 km2(70%)和4775 km2(10%)。 在治多和曲麻莱地区,由于人类活动的影响使得藏羚生境大面积丧失,生境高度破碎化,尤其是治多地区,影响面积达将近70%。在可可西里地区,10%的影响面积虽然不是太大,但是近几年来由于各种形式的旅游日趋升温,尤其是青藏铁路建设开通,将增加道路对藏羚生境的影响程度。人类活动影响在研究地区分布极不平均,在曲麻莱的中东部、治多的东部以及可可西里的109国道附近人类活动影响的强度较大,在这些地区藏羚的生存条件恶劣,甚至部分地区已经不适合藏羚栖息了。 6、最后,基于研究地区的坡度grid图层、非监督分类grid图层以及不同程度人类活动影响的grid图层,对不同坡度、道路和居民影响的生境面积进行综合查询分析。把人类活动对藏羚生境的影响强度重新划分为如下3个等级,A、短距离影响,距离道路1000m或距离居民点3000m范围内的影响,也就是人类活动的强烈影响;B、中距离影响,距离道路2000m或距离居民点6000m范围内的影响,也就是人类活动的强烈影响和中度影响之和;C、长距离影响,距离道路3000m或距离居民点9000m范围内的影响,也就是人类活动的强烈影响、中度影响和轻度影响的总和。曲麻莱、治多和可可西里研究地区中坡度小于等于30度并且人类活动长距离范围影响下藏羚适合栖息的生境面积及占相应研究地区总面积的比例为12597 km2(32%)、6117km2(19%)和23564km2(48%)。 在研究地区,治多地区人类活动对藏羚生境适宜性的影响最为严重,其次为曲麻莱地区,而可可西里地区的人类活动影响较小。尤其是治多地区和曲麻莱地区,当人类活动的影响最大距离时,治多地区藏羚适宜生境面积竟然不到总面积的1/5,曲麻莱地区不到1/3。这两地区人类活动主要集中在东部,导致治多东部地区和曲麻莱中东部地区几乎没有藏羚分布。于是,由于人类活动的影响,使得拥有良好生境条件的治多和曲麻莱地区适合藏羚栖息的生境却较少,而生境条件相对较差的可可西里地区反而拥有相对较多的适合藏羚栖息的生境。
Resumo:
The magnetosphere-ionosphere coupling is mainly manifested by the trans- porting processes of energy into the ionosphere , the energy is carried by solar wind and firstly accumulate at the magnetosphere, and the coupling processes also significantly include the interaction between the magnetosphere and ionosphere for mass and energy. At the quiet condition, energy is delivered by the large-scale convection of the geomagnetic field; the huge energy from solar wind bulk will be injected into and consumed at the near magnetosphere and ionosphere by the geomagnetic storm and substorm activities. Aurorae and FACs (Field-aligned currents) are the important phenomena in the coupling processes. In the present work, firstly, we analyze the activity characteristics of auroral precipitating particle, secondly, we study the distribution characters of large-scale field aligned currents (LS FACs) at storm-time using the observations from different satellites at different altitudes. Finally, we investigate the evolution of the geomagnetic field configuration at the nightside sector on the onset of the expansion phase in a substorm event, the substorm event happened at 0430UT to 0630UT on 8th Nov. 2004. The main results as follows: At the first, the data of the estimated power input (EPI) of auroral particles from NOAA/POES (Polar orbiting environmental satellite) for some 30 years have been analyzed. The variation tendencies of the EPI generally coincide with aa, AE and Dst indices. The annual variation of EPI shows equinox peaks and an asymmetric-activity with a higher peak in the winter-hemisphere than in the summer-hemisphere. The diurnal UT variations are different from north and south hemisphere: for north hemisphere, the peak appears at 1200UT, and the relative deviation is 22% to the daily average of the north hemisphere. For south hemisphere, the maximal deviation is 22% at 2000UT. So the diurnal variation of EPI is more dominant than the annual variation which maximal deviation is 3% to 12% for different seasons. Studies on correlations of the hourly average of EPI, Pa, with AE and Dst indices show a correlation coefficient r=0.74 of Pa and AE, and r=-0.55 of Pa and Dst. The hourly EPIs for north and south polar regions, NPa and SPa, show a north-south asymmetry with a higher correlation of SPa and AE (or Dst). Time delays of EPI with respect to magnetic indices are examined, the maximum correlation coefficient of Pa with AE (r=0.78) occurs when the time delay =0, suggesting a synchronous activity of auroral electrojet and auroral precipitating particles, while =1-2h, the correlation coefficient of Pa with Dst is maximum (r=0.57), suggesting that the activity of auroral particle precipitating may influence the ring current on some extent. Sencondly, we use the high-resolution magnetic field vector data of the CHAMP satellite to investigate the distribution of large-scale FACs during the great magnetic storm on 7th to 8th Nov. 2004. The results show that, whether in the northern or southern hemisphere, the number and density of large-scale FACs during the main-phase are more and bigger than these during the recover-phase, and the number of large-scale FACs in morning sector obviously is more than that in afternoon sector. In terms of the magnetic indices, we find that large-scale FACs in morning sector significantly affected by the substorm activities, while in afternoon sector the large-scale FACs mainly indicate the fluctuations of the ring-current in storm time. Accordingly to the former studies, similarly, we find that in the morning sector, the scale of the large-scale FACs move to the high-latitude region, and in the afternoon sector, large-scale FACs distinctly expand to the low-latitude region. During the time periods that the NOAA/POES auroral precipitating particle power data temporally correspond to the large-scale FACs, the more the power of auroral particle is, the more and bigger the number and density of FACs are. At the same time, we use the magnetic field vector data of POLAR obtain a good form of region 1, region 2, and three pieces of cusp FACs during a single transit at 1930UT-2006UT on 07th. And the characteristics of simultaneous electric field and energy particles observations on Polar are coincide with the five FACs pieces. Finally, by means of the observation of Cluster 4 and Goes 10、 Goes 12, we analyze the evolution process of the change of the magnetic field configuration at night sector at the expansion phase of a substorm event which happened during 0430UT to 0630UT on 8th Nov. 2004, we find that the times of the beginning of the polarizations of magnetic field are observed from Goes 10 to Goes 12 then to Cluster 4. So, at the synchronous orbit ( 6.6 RE) to 10RE distance scale of the neutral sheet, the current disruption spread tailward. Simultaneously, the strengthen of the FACs deduced from these satellites’ magnetic field observations are almost consistent with the times of polarizations, as well as the high energy particles injection and the electric field dominant variation. The onset times determined by the magnetic field polarizations from these satellites are all ahead of the onset time that confirmed from the auroral electrojet indices. So, these characters of different observations can be used as the criterions to determine the onset time for the substorms of such type as we studied.
Resumo:
Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.