79 resultados para Immune response.
Resumo:
Bacterial flagellin is known to induce potent immune response in vertebrate systems via the toll-like receptor (TLR) 5. As a result, flagellin has been studied extensively as a vaccine adjuvant. In a previous study, we examined the vaccine and adjuvant potentials of the flagellin (FliC) of the fish pathogen Edwardsiella tarda. We found that E. tarda FliC induced low protective immunity by itself but could function as a molecular adjuvant and potentiate the specific immune response induced by the E. tarda antigen Eta6. Since FliC is a large protein and organized into distinct structural domains, we wondered whether the immunostimulating effect observed with the full-length protein could be localized to a certain region. To investigate this question, we in the present study dissected the FliC protein into several segments according to its structural features: (i) N163, which consists of the conserved N-terminal 163 residues of FliC; (ii) M160, which consists of the variable middle 160 residues; (iii) C94, which consists of the conserved C-terminal 94 residues; (iv) NC257, which is an artificial fusion of N163 and C94. To examine the adjuvanticity of the FliC fragments, DNA vaccine plasmids expressing FliC fragments in fusion with Eta6 were constructed and used to immunize Japanese flounder. The results showed that N163 produced the best adjuvant effect, which, in respect to improvement in the relative percent survival of the vaccinated fish, was comparable to that of the full-length FliC. None of the other FliC fragments exhibited apparent immunopotentiating effect. Further analysis showed that N163 enhanced the production of serum specific antibodies and, like full-length FliC, significantly upregulated the expression of the genes that are possibly involved in innate and adaptive immunity. These results indicate that N163 is the immunodominant region of FliC and suggest that E. tarda FliC may induce immune responses in Japanese flounder via mechanisms alternative to that involving TLR5. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cystatins are a superfamily of proteins as reversible inhibitor of cysteine proteinases which play essential roles in a spectrum of physiological and immunological processes In this study, a novel member of Cystatin superfamily was identified from Chinese mitten crab Enocheir sinensis (designated EsCystain) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approaches The full-length cDNA of EsCystatin was of 1486 bp, consisting of a 5'-terminal untranslated region (UTR) of 92 bp, a 3' UTR of 1034 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 360 bp encoded a polypeptide of 120 amino acids with the theoretical isoelectric point of 548 and the predicted molecular weight of 13 39 kDa. A signal Cystatin-like domain (Gly(25) to Lys(112)) was found in the putative amino acid sequences of EsCystatin Similar to other Cystatins, the conserved central Q(70)VVSG(74) motif was located in the Cystatin-like domain of EsCystatin But EsCystatin lacked of signal peptide and disulphide bond. The EsCystatin exhibited homology with the other known Cystatins from invertebrates and higher vertebrates, and it was clustered into Cystatin family 1 in the phylogenetic tree. The mRNA transcripts of EsCystain were mainly expressed in hemolymph, gill, hepatopancreas, gonad and muscle, and also marginally detectable in heart After Listonella anguillarum challenge, the relative expression level of EsCystatin in hemolymph was down-regulated to 0 6-fold (P < 0.05) at 3 h post-challenge. Subsequently, it was up-regulated to 3.0-fold (P < 0.01)at 24 h Afterwards. EsCystatin mRNA transcripts suddenly decreased to original level. After Pichia pastoris GS115 challenge, its mRNA expression level in hemolymph was up-regulated to the peak at 3 h (2 8-fold of that in blank (P < 0 01)) The cDNA fragment encoding the mature peptide of EsCystatin was recombined and expressed in Escherichia coli Rosetta-gami (DE3). The recombinant EsCystatin displayed a promoter inhibitory activity against papain When the concentration of EsCystatin protein was of 300 mu g mL(-1), almost 89% of papain activity could be inhibited. These results collectively suggested that EsCystatin was a novel member of protein in Cystatin family, was a potent inhibitor of papain and involved in immune response versus invading microorganisms. (C) 2010 Elsevier Ltd All rights reserved.
Resumo:
The effects of infection of EGFP-expressing Escherichia coli on the haemocytes of the ascidian Ciona intestinalis were investigated. The results showed that THC of the infected individuals changed significantly. Hyaline amoebocytes phagocytosed E. coli in 5 min and excreted lysosome particles that attached to the surface of the bacteria. Granular amoebocytes released lots of particles for Immoral immunity while stem-cell-like haemocytes remained intact. With the increase in THC, the stem-cell-like haemocytes showed division and proliferation. A small portion of hyaline amoebocytes was at early apoptosis stage I h after infection and typical apoptosis bodies emerged in granular amoebocytes. A few of the infected haemocytes showed DNA damage using SCGE assay. Flow cytometry analysis revealed an obvious apoptosis peak in infected haemocytes. In conclusion, apoptosis was found to be an important immune response of ascidian haemocytes response to bacterial infection. To our best knowledge, this is the first report of the occurrence of apoptosis of haemocytes in ascidians. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
C2 domains are protein structural modules found in many eukaryotic proteins involved in signal transduction, membrane trafficking, and immune defense. Most of the studied C2 domain-containing proteins are multi-domained in structure, in which the C2 domain is an independently folded motif and plays an essential role in calcium-dependent membrane-targeting. Although C2 domains isolated from intact proteins have been studied for biological functions, no study on natural proteins containing C2 domain only has been documented. In this study, we identified a Scophthalmus maximus protein SmC2P1 that is comprised of a single C2 domain and lacks any other apparent domain structures. The deduced amino acid sequence of SmC2P1 contains 129 residues and shares 36-38% identities with the C2 domains of the perforins of several fish species. Like typical C2 domains, SmC2P1 is predicted to organize into eight beta-strands with a Ca2+-binding site located in inter-strand loops. SmC2P1 expression was detected, in deceasing order, in liver, spleen, blood, brain, muscle, kidney, gill, and heart. Experimental challenge of turbot with a bacterial pathogen significantly upregulated SmC2P1 expression in kidney in a time-dependent manner. Recombinant SmC2P1 purified from yeast exhibits no hemolytic activity but binds to pathogen-infected kidney lymphocytes in the presence of calcium. Furthermore, interaction of recombinant SmC2P1 with bacterium-infected lymphocytes reduced bacterial survival. These results indicate that SmC2P1 is a functional protein that is involved in host immune defense against bacterial infection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Selenium binding proteins (SeBP) represent a family of proteins that are believed to be involved in controlling the oxidation/reduction in many physiological processes. The cDNA of Zhikong Scallop Chlamys farreri selenium binding protein (zSeBP) was cloned by expressed sequence tag (EST) and RACE techniques. The high similarity of zSeBP deduced amino acid sequence with the SeBP in other organisms, such as bird, fish, frog, mosquito, fruit fly, mammalian, and even nematode and microorganism indicated that zSeBP should be a member of SeBP family. The temporal expression of zSeBP in the hemocytes was measured by semi-quantitative RT-PCR after scallops were stimulated by either oxidative stress or microbial challenge. The expression of zSeBP was up-regulated progressively after stimulation, and then dropped gradually to the original level. Meanwhile, malondialdehyde (MDA) measured by the colorimetric method in the microbial challenged scallops increased immediately after scallops was challenged by microbes, and was significantly higher than that in the control scallops. Results indicated that the microbial infection could incense the disorder of oxidation/reduction and may result in high MDA production. The negative correlation between the expression level of zSeBP and the MDA content suggested that zSeBP could play an important role in mediating the anti-oxidation mechanisms and immune response in marine invertebrates. (c) 2005 Published by Elsevier Ltd.
Resumo:
Heat shock protein 70 (HSP70) is an important member of the heat shock protein superfamily, and it plays a key role in the process of protecting cells, facilitating the folding of nascent peptides and responding to stress. The cDNA of bay scallop Argopecten irradians HSP70 (designated AIHSP70) was cloned by the techniques of homological cloning and rapid amplification of cDNA end (RACE). The full length of AIHSP70 cDNA was 2651 bp in length, having a 5' untranslated region (UTR) of 96 bp, a 3' UTR of 575 bp, and an open reading frame (ORF) of 1980 bp encoding a polypeptide of 659 amino acids with an estimated molecular mass of 71.80 kDa and an estimated isoelectric point of 5.26. BLAST analysis revealed that the AIHSP70 gene shared high identity with other known HSP70 genes. Three classical HSP signature motifs were detected in AIHSP70 by InterPro, analysis. 3-D structural prediction of AIHSP70 showed that its N terminal ATPase activity domain and,C terminal substrate-binding domain shared high similarity with that in human heat shock protein 70. The results indicated that the AIHSP70 was a member of the heat shock protein 70 family. A semi-quantitive RT-PCR method was used to analyse the expression of AIHSP70 gene after the treatment of naphthalin which is one kind of polycyclic aromatic hydrocarbon (PAH) and the challenge of bacteria. mRNA expression of AIHSP70 in scallop was up-regulated significantly after the stimulation of naphthalin and increased with increasing naphthalin concentration. A clearly time-dependent expression pattern of AIHSP70 was observed after the scallops were infected by Vibrio anguillarum, and the mRNA expression reached a maximum level at 8 h and lasted to 16 h, and then dropped progressively. The results indicated that AIHSP70 could play an important role in mediating the environmental stress and immune response in scallop. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Translationally controlled tumor protein (TCTP) is one of the abundant and ubiquitously expressed proteins in metazoans In the present study, the first molluscan TCTP (denoted as VpTCTP) was identified from Venerupis philippinarum haemocytes by EST and RACE approaches The full-length cDNA of VpTCTP consisted of 1148 nucleotides with an open-reading frame of 555 bp encoding 184 amino acids The deduced amino acid sequence of VpTCTP shared high similarity with TCTPs from other species, indicating that VpTCTP should be a new member of TCTP family Several highly conserved motifs, including 5'terminal ologopyrimidine (5'TOP) starting sequence and rich AU and AUUT elements in 3'UTR, were also identified in VpTCTP The tissue and temporal expression of VpTCTP after Vi boo anguillarum challenge was recorded by quantitative real-time RT-PCR. VpTCTP transcript could be detected in all examined tissues with the highest expression level in haemocytes and the lowest in hepatopancreas Concerning the time-course expression in haemocytes, the relative expression of VpTCTP mRNA was down-regulated sharply from 6 h to 12 h post-infection. Then, the expression level was obviously up-regulated and reached 3.4-fold to that in the control group at 48 h post challenge As time progressed, the expression of VpTCTP recovered to the original level at 96 h. All these results indicated that VpTCTP was an acute-phase protein involved in the Immune response of V philippinarum (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
对虾病害在世界范围内的广泛传播,给水产养殖和沿海农村经济造成了重大损失。深入开展对虾免疫机制研究并在此基础上寻找对虾疾病防治的有效方法已成为当务之急。研究表明,当对虾等甲壳动物受到外界病原刺激时,其体内的吞噬细胞在吞噬活动中会激活磷酸己糖支路的代谢,引起呼吸爆发,产生多种活性氧分子。另外,受到病原侵染的对虾还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发大量活性氧的产生。这些活性氧分子可以杀灭入侵的病原微生物,但同时由于活性氧分子反应的非特异性,它们也会对宿主的细胞、组织和器官造成严重伤害,进而导致对虾生理机能的损伤和免疫系统的破坏。所以,消除对虾体内因过度免疫反应产生的过量氧自由基将能够增强其抵御病原侵染的能力,提高免疫力。本论文从中国明对虾体内克隆了线粒体型超氧化物歧化酶(mMnSOD)、胞质型超氧化物歧化酶(cMnSOD)、过氧化氢酶(Catalase)和过氧化物还原酶(Peroxiredoxin)等四种与免疫系统相关的抗氧化酶基因,分析了它们的分子结构特征,组织分布及应答不同病原刺激的表达变化模式,并对其中的mMnSOD基因和Peroxiredoxin基因进行了体外重组表达、分离纯化和酶活性分析。 采用RACE技术从中国明对虾血细胞中克隆了两个超氧化物歧化酶(SOD)基因,通过序列比对分析发现,其中一个为mMnSOD基因,另一个为cMnSOD基因。mMnSOD基因的cDNA全长为1185个碱基,其中开放阅读框为660个碱基,编码220个氨基酸,其中推测的信号肽为20个氨基酸。多序列比对结果显示中国明对虾mMnSOD基因的推导氨基酸序列与罗氏沼虾、蓝蟹的推导氨基酸序列同源性分别为88%和82%。Northern blot结果表明,该基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。半定量RT-PCR结果显示,对虾感染病毒3 h时,该基因在血细胞和肝胰脏中的转录水平显著升高。此外,通过构建原核表达载体,本研究对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活分析。cMnSOD基因的cDNA全长为1284个碱基,其中开放阅读框为861个碱基,编码287个氨基酸。多序列比对结果显示中国明对虾cMnSOD基因的推导氨基酸序列与斑节对虾和凡纳滨对虾的同源性高达98%和94%。组织半定量结果显示,cMnSOD基因在对虾被检测的各个组织中均有表达。 另外,半定量RT-PCR结果表明,对虾感染病毒23h时,该基因在肝胰脏中的转录上升到正常水平的3.5倍;而感染后59 h时,该基因在血细胞中的转录上升到正常水平的2.5倍。 利用根据其他生物过氧化氢酶保守氨基酸序列设计的简并引物,结合RACE技术,从中国明对虾肝胰脏中克隆到了过氧化氢酶基因的部分片段,片段长1725个碱基。多序列比对结果发现目前所得中国明对虾Catalase基因部分片段的推导氨基酸序列与罗氏沼虾和皱纹盘鲍Catalase氨基酸序列的同源性分别达到95%和73%。通过实时荧光定量PCR技术对中国明对虾Catalase基因在各个组织中的分布情况及病毒感染后该基因在血细胞和肝胰脏中的转录变化进行了研究。结果发现,该基因在肝胰脏、鳃、肠和血细胞中表达水平较高,在卵巢、淋巴器官和肌肉中的表达水平相对较弱;感染病毒23 h和37 h时,对虾血细胞和肝胰脏中该基因mRNA的表达量分别出现显著性上升。 依据中国明对虾头胸部cDNA文库提供的部分片段信息,结合SMART-RACE技术,从中国明对虾肝胰脏中克隆到了过氧化物还原酶基因(Peroxiredoxin), 该基因的cDNA全长为942个碱基,其中开放阅读框为594个碱基,编码198个氨基酸。中国明对虾Peroxiredoxin基因的推断氨基酸序列与伊蚊、文昌鱼和果蝇等Peroxiredoxin基因的推断氨基酸序列同源性分别为77%、76%和73%。其蛋白理论分子量为22041.17 Da,pI为5.17。Northern blot结果表明,Peroxiredoxin基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。实时荧光定量PCR结果显示,弧菌感染后,该基因在对虾血细胞和肝胰脏中的转录水平都有明显变化并且表达模式不同。另外,对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活性分析。酶活性分析表明,复性后的重组蛋白能在DTT存在的条件下还原H2O2。
Resumo:
栉孔扇贝(Chlamys farreri)是我国北方重要养殖扇贝种类,在海湾扇贝和虾夷扇贝引进以前,其年产量占我国扇贝总产量的80%。但自1997 年以来,我国北方大部分养殖区连续发生养殖栉孔扇贝大批死亡事件,严重影响和损害了栉孔扇贝养殖业的发展。我国栉孔扇贝大规模死亡是多种因素综合作用的结果。大致可分为生物因素与非生物因素:非生物的因素有夏季水温过高、养殖密度过高、养殖环境退化等。生物因素有流行性病原生物的侵害和扇贝种质的退化等。其中,急性病毒性坏死症(Acute Viral Necrobiotic Disease, AVND)病毒造成栉孔扇贝大规模死亡现象的研究已经开展。本研究通过生理学、免疫学技术和手段研究栉孔扇贝对急性病毒性坏死症病毒的生理和免疫应答,以期更好的了解栉孔扇贝对这一病毒的防御机制,为扇贝病害防治提供资料。 本研究对不同温度下栉孔扇贝感染AVND 病毒后的耗氧率和排氨率进行了测定。结果显示,在17℃下,病毒组和注射生理盐水组栉孔扇贝的耗氧率逐渐升高,但两者无显著差异;方差分析显示,各组间排氨率的变化无显著差异。在25℃下,栉孔扇贝闭壳肌注射AVND 病毒和注射生理盐水组栉孔扇贝的耗氧率逐渐升高,在12 小时取得最大值,对照组则变化不大。方差分析显示,注射病毒组与注射生理盐水组和对照组之间有显著差异(P<0.05)。同时,对栉孔扇贝感染AVND 病毒的致病剂量进行了研究,在25℃水温下,栉孔扇贝肌肉注射感染AVND 病毒后,只有150 μl 组表现出明显患病症状并在第三天开始出现死亡现象,注射50、100 μl 组则无明显症状;17℃下栉孔扇贝感染AVND 病毒后无明显患病症状,表明AVND 病毒对栉孔扇贝的感染致病具有剂量和温度依赖性。 对于25℃水温下栉孔扇贝感染AVND 病毒后血清中相关免疫酶类活力变化进行了测定。栉孔扇贝感染AVND 病毒后血清中SOD 的活性逐渐升高,在48小时达到最大值,方差分析显示不同时间点之间的SOD 活性有显著差异(P<0.05),在48 小时,病毒组和生理盐水组间的SOD 活性有显著差异(P<0.05),在其它时间点无显著差异。酸性磷酸酶(ACP)的活力在感染病毒2 小时后升高,在12 小时下降,然后又升高,在48 小时达到最大值。方差分析显示不同时间点之间的ACP 活性有显著差异(P<0.05),在2 小时和48 小时,病毒组和生理盐水组间的ACP 活性有显著差异(P<0.05)。碱性磷酸酶(AKP)的活力变化趋势与ACP 相同,在24 小时达到最大值。方差分析显示不同时间点之间的AKP 活性有显著差异(P<0.05)。在2 小时、12 小时、24 小时病毒组和生理盐水组间有显著差异(P<0.05)。栉孔扇贝酚氧化酶的活性最大值在48 小时,但与生理盐水对照组之间无显著差异。溶菌酶(Lysozyme)活性在病毒组和生理盐水对照组间无显著差异,病毒组最大值在2 小时取得,对照组在24 小时取得。结果表明栉孔扇贝通过升高或调节自身免疫相关蛋白酶类合成应对AVND 病毒侵染。 采用荧光实时定量PCR 技术,对栉孔扇贝感染AVND 病毒后免疫相关基因的时空表达规律进行了研究。水温17℃下,栉孔扇贝肌肉注射感染AVND 病毒后超氧化物歧化酶(SOD)基因mRNA 的表达量逐渐上升,在注射后24 小时达到最大值,约为空白对照组的1.8 倍,方差分析显示,病毒组SOD 的表达量不同时间点之间有显著变化(P<0.05);但与生理盐水对照组相比较,病毒组SOD表达量无显著差异。在水温25℃下SOD 基因mRNA 的表达量逐渐上升,在注射后6 小时达到最大值,约为对照组的1.5 倍,空白对照组的2.2 倍。病毒组SOD的表达量不同时间点之间有显著差异(P<0.05);在感染后2、6、12、24 小时病毒组SOD 表达量比对照组有显著升高(P<0.05)。溶菌酶基因在肝胰脏中的表达升高,在6 小时达到最大值,约为生理盐水对照组的1.5 倍,空白对照组的2.7倍,在48 小时取得最小值(低于空白对照组)。病毒感染后不同时间之间溶菌酶基因表达有显著差异(P<0.05),感染后6、24 和48 小时病毒组溶菌酶基因表达比对照组有显著升高(P<0.05)。在AVND 病毒感染后6 小时,在肝胰脏、性腺、肌肉、鳃中溶菌酶mRNA 量急剧增加,分别达到了空白对照组的4.7 倍、3.8 倍、13.43 倍和25.15 倍。方差分析显示在不同组织部位的表达有显著差异(P<0.05)。表明AVND 病毒感染后栉孔扇贝免疫相关基因的表达具有时序性和组织部位特异性。
Resumo:
本论文的目的是研究几种病原菌口服疫苗接种鱼类的免疫效果,并从常见病原菌株中筛选几个具有较好保护效果的蛋白抗原,利用口服免疫的方式,接种养殖动物,并检测免疫效果。 以10号白油为有机溶剂,采用搅拌与均浆方法制备鳗弧菌M3和SMP1的油乳化二价疫苗,用饵料包埋后以口服途径免疫养殖大菱鲆,评价免疫大菱鲆的免疫应答和疫苗的保护效果。结果显示,以油乳化和未油乳化疫苗分别连续口服免疫大菱鲆一周后,在后肠组织,乳化疫苗刺激产生的非特异性活力、特异性抗体水平均高于未乳化疫苗;而在血清,两种疫苗引起的两种酶的活力、SMP1抗体水平没有变化,但在乳化疫苗免疫的大菱鲆检测到明显高于未免疫对照大菱鲆的M3抗体水平。大菱鲆后肠组织原位杂交结果显示,口服免疫的大菱鲆后肠褶皱有IgM抗体的产生和分布。其中,乳化疫苗免疫大菱鲆的IgM抗体的产生和分布水平高于未乳化疫苗免疫的大菱鲆。攻毒实验显示,乳化疫苗免疫的大菱鲆对M3和SMP1的感染分别获得100%和50%的免疫保护率,而未乳化疫苗获得的免疫保护率分别为57.9%和0%,表明乳化疫苗比未乳化疫苗更有效地保护大菱鲆、抵抗病原的感染。在乳化疫苗免疫持续期的研究中,免疫的大菱鲆后肠在免疫后120天仍能检测到抗体效价,在免疫后90天还能观察到一定的免疫保护效果。免疫30天、60天、90天和120天的大菱鲆分别获得100%、66.7%、36.7%和13.3%的免疫保护力。 以鳗弧菌M3和SMP1、链球菌CF、迟缓爱德华菌SMW7作为细菌抗原制备油乳化多价口服疫苗和轮虫携带疫苗,口服途径免疫养殖大菱鲆与大菱鲆初孵仔鱼。结果显示,在免疫大菱鲆后肠可检测到抗M3抗体水平的提高(P<0.05),而在其胆汁、鳃、中肠、体表黏液、前肠与血清中抗体效价变化与对照组没有显示出差异;没有检测到免疫大菱鲆后肠抗SMP1、SMW7、CF抗体效价。M3浸泡攻毒实验显示,口服免疫的大菱鲆获得了100%的免疫保护力;在M3注射攻毒和SMP1、CF、SMW7浸泡攻毒大菱鲆的实验中,在每个攻毒组中,免疫组大菱鲆开始死亡的时间都要比对照组有不同程度的延迟,但攻毒大菱鲆都发生死亡,不能显示出与对照组的差异。轮虫携带免疫的结果显示,免疫的大菱鲆初孵仔鱼并未获得较好的保护效果,与对照大菱鲆没有体现出差异。 从致病性病嗜水气单胞菌(Aeromonas hydrophila)LSA34克隆并表达ahaI基因和gapA基因,从迟缓爱德华菌(Edwardsiella tarda)LSE40克隆并表达eseB,将所得蛋白分别通过腹腔注射途径免疫大菱鲆,检测蛋白的免疫原性和免疫保护。结果在免疫后7天就可以检测到AhaI、GapA蛋白免疫组大菱鲆产生的抗体,至第40天可以检测到明显的保护性抗体,之后抗体效价增加明显,直至第60天时达到最高值。EseB免疫的大菱鲆第一次免疫后15天就有较高的抗体效价产生,明显高于对照组大菱鲆血清抗体效价,到距第一次免疫60天时,抗体效价达到最高值。攻毒实验显示,与对照组相比,AhaI免疫组和GapA免疫组对LSA34感染的免疫保护力分别为80%和100%;AhaI免疫组和GapA免疫组对LSE40感染的免疫保护力分别为30%和10%。,而对照组牙鲆对人工攻毒不具有保护力。以AhaI和GapA作为疫苗免疫大菱鲆,使大菱鲆获得了对嗜水气单胞菌LSA34较高的免疫保护;而对迟缓爱德华氏菌LSE40的交叉保护能力没有明显提高。EseB免疫的大菱鲆在攻毒实验中并没有显示出较好的保护效果,与对照组相比,只是在死亡时间上有所延迟。 以从致病性嗜水气单胞菌中克隆的ahaI和gapA基因表达出的蛋白为蛋白抗原制备油乳化疫苗,用饵料包埋后以口服途径免疫养殖牙鲆,评价免疫牙鲆的免疫应答和疫苗的保护效果。结果显示,以油乳化和未油乳化疫苗分别免疫牙鲆一周后,在后肠组织,AhaI和GapA乳化疫苗免疫组牙鲆检测到抗体,且分别高于AhaI和GapA未乳化疫苗免疫的牙鲆;而在血清,GapA的两种疫苗引起的GapA抗体水平没有变化;但在AhaI乳化疫苗免疫的牙鲆第21天和第35天的血清中检测到高于未免疫对照牙鲆的AhaI抗体水平,AhaI未乳化疫苗免疫牙鲆血清对照组相比没有检测到AhaI抗体水平的变化。
Resumo:
Extracellular superoxide dismutase (ECSOD) is a major extracellular antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned a novel ECSOD from the bay scallop Argopecten irradians (AiECSOD) by 3' and 5' RACE. The full-length cDNA of AiECSOD was 893 bp with a 657 bp open reading frame encoding 218 amino acids. The deduced amino acid sequence contained a putative signal peptide of 20 amino acids, and sequence comparison showed that AiECSOD had low degree of homology to ECSODs of other organisms. The genomic length of the AiECSOD gene was about 5276 bp containing five exons and six introns. The promoter region contained many putative transcription factor binding sites such as c-Myb, Oct-1, Sp1, Kruppel-like, c-ETS, NF kappa B, GATA-1, AP-1, and Ubx binding sites. Furthermore, tissue-specific expressions of AiECSOD and temporal expressions of AiECSOD in haemocytes of bay scallops challenged with bacteria Vibrio anguillarum were quantified using qRT-PCR. High levels of expression were detected in haemocytes, but not in gonad and mantle. The expression of AiECSOD reached the highest level at 12 h post-injection with V. anguillarum and then returned to normal between 24 h and 48 h post-injection. These results indicated that AiECSOD was an inducible protein and that it may play an important role in the immune responses against V anguillarum. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Two unique and highly compartmentalized bay scallop Argopecten irradians superoxide dismutases: MnSOD and ecCuZnSOD, have been molecularly characterized in our previous study. To complete characterize the SOD family in A. irradians, a novel intracellular copper/zinc SOD from the A. irradians (Ai-icCuZnSOD) was obtained and characterized. The full-length cDNA of Ai-icCuZnSOD was 1047 bp with a 459 bp open reading frame encoding 152 amino acids. The genomic length of the Ai-icCuZnSOD gene was about 4279 bp containing 4 exons and 3 introns. The promoter region containing many putative transcription factor binding sites were analyzed. Furthermore, quantitative reverse transcriptase real-time PCR (qRT-PCR) analysis indicated that the highest expression of the Ai-icCuZnSOD was detected in gill and the expression profiles in hemocytes of bay scallops challenged with bacteria Vibrio anguillarum and lipopolysaccharide (LPS) were different. The result presented an increased expression after injection with LPS whereas no significant changes were observed after V. anguillarum injection. A fusion protein containing Ai-icCuZnSOD was produced in vitro. The rAi-icCuZnSOD is a stable enzyme, retaining more than 80% of its activity between 10 and 60 degrees C and keeping above 88% of its activity at pH values between 5.8 and 9. Ai-icCuZnSOD is more stable under alkaline than acidic conditions. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel manganese superoxide dismutase (MnSOD) was cloned from bay scallop Argopecten irradians by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of MnSOD was of 1207 bp with a 678 bp open reading frame encoding 226 amino acids. The deduced amino acid sequence contained a putative signal peptide of 26 amino acids. Sequence comparison showed that the MnSOD of A. irradians shared high identity with MnSOD in invertebrates and vertebrates, such as MnSOD from abalone Haliotis discus discus (ABG88843) and frog Xenopus laevis (AAQ63483). Furthermore, the 3D structure of bay scallop MnSOD was predicted by SWISS-MODEL Protein Modelling Server and compared with those of other MnSODs. The overall structure of bay scallop MnSOD was similar to those of zebrafish Danio rerio, fruit fly Drosophila melanogaster, Chinese shrimp Fenneropenaeus chinensis, human Homo sapiens, and had the highest similarity to scallop Mizuhopecten yessoensis and abalone H. discus discus. A quantitative real-time PCR (qRT-PCR) assay was developed to detect the mRNA expression of MnSOD in different tissues and the temporal expression in haemocytes following challenge with the bacterium Vibrio anguillarum. A higher-level of mRNA expression of MnSOD was detected in gill and mantle. The expression of MnSOD reached the highest level at 3 h post-injection with V. anguillarum and then slightly recovered from 6 to 48 h. The results indicated that bay scallop MnSOD was a constitutive and inducible protein and thus could play an important role in the immune responses against V anguillarum infection. (c) 2008 Elsevier Ltd. All rights reserved.