61 resultados para HIPPOCAMPAL SLICES
Resumo:
Earlier studies on the distribution of geological environmental indicators in China revealed drastic changes from a zonal climate pattern (planetary-wave-dominant pattern) in the Paleogene to a monsoon-dominant one in the Neogene, which suggested an inception of the initial East-Asian summer monsoon. However, there are different views about the time and causes of the changes.Here, we attempt to compile a series of paleoenvironmental maps based on newly collected climate indicators from the literatures and chronologically constrained evidence of geological maps in order to re-examine the temporal and spatial evolution of climate belts in China during the Cenozoic with special emphasis on the changes of the arid belt. These indicators include mammalian fauna, coal, carbonate concretions, jarosite, salt, gypsum deposits and pollen assemblages etc, with chronological controls that we believe reliable. Pollen assemblages and mammalian fauna have been classified into three categories (arid, semi-arid/sub-humid, humid) to reflect the intensity of aridity/humidity. Salt, jarosite and gypsum deposits are classified as the arid indicators. Carbonate concretions and coal are classified into the semi-arid/sub-humid and humid one respectively. Paleoenvironmental maps at 8 time slices have been reconstructed. They are the Paleocene, Eocene, Oligocene, Miocene, Early Miocene, Middle Miocene, Late Miocene and Pliocene.And furthermore, we attempt to use IAP^AGCM to simulate the evolution of climate belts in emphasizing on the changes of the rain band, and compare the results with the paleoenvironmental maps in order to examine the causes of the drastic paleoenvironmental changes near the Oligocene/Miocene boundary. 36 sensitive numerical experiments are carried out using the IAP__AGCM to analyze the impacts of the uplift of the Himalayan-Tibetan complex, shrinkage of the Paratethys Sea, expansion of the South China Sea and the development of the polar ice sheets on rain band in China.The main conclusions are as follows:The obtained results essentially confirm the earlier conclusions about a zonal climate pattern in the Paleogene and a different pattern in the Neogene, and illustrate that a monsoon-dominant environmental pattern with inland aridity formed by the Early Miocene, which is temporally consist with the onset of eolian deposits in China.Cenozoic cooling and the formation of polar ice sheets are unlikely the main causes to the changes of environmental patterns mentioned above in China. But northern hemispheric cooling and the ice-sheets can intensify the Siberian High Pressure, and strengthen the winter monsoon circulations and enhance the aridity in the west part of China. These results support the earlier studies.Shrinkage of the Paratethys Sea and uplift of the Himalayan-Tibetan complex played important roles in strengthening the East Asian monsoon and induceing the above changes of environmental pattern, which is consistent with the earlier studies. Furthermore, "the monsoon-dominant pattern" appears when the Himalayan-Tibetan complex reaches to about 1000-2000 meters high and the Paratethys Sea retreats to the Turan Plate.4) Expansion of the South China Sea is another significant factor that drives the evolution of environmental patterns. We believe that the above three factors co-act and drive the change of the environmental patterns from a planetary-wave-dominant one to a monsoon-dominant one. However, the impacts of each factor vary by regions. The uplift mainly increases the humidity in Southwestern China and the aridity in northwestern country. The shrinkage mainly increases the humidity in Northern China and also enhances the aridity in the northwestern country. The expansion greatly increases the humidity in the south part of China.