123 resultados para HEAT-TREATMENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel PEMFC catalytic layer was fabricated by a Nafion-pyrolyzed method, which demonstrated a high performance with a maximum power density of 0.82 W/cm(2) on an electrode prepared by this method. The effects of the heat-treatment temperature and Nation content in the catalyst layer on performance were studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A carbothermal hydrogen reduction method was employed for the preparation of activated carbon supported bimetallic carbide. The resultant samples were characterized by BET surface area measurement, X-ray diffraction, and temperature-programmed reduction-mass spectroscopy. The results showed that nanostructured beta-Mo2C can be formed on the activated carbon by carbothermal hydrogen reduction above 700 degreesC. The particle sizes of beta-Mo2C increase with increasing reaction temperatures and Mo loading. The bimetallic CoMo carbide can be synthesized by the carbothermal hydrogen reduction even around 600 degreesC. The bimetallic CoMo carbide is from carbothermal hydrogen reduction of CoMoO4 precursor and is easily formed when the Co/Mo molar ratio is 1.0. Separation of the bimetallic CoMo carbide phase into Mo carbide and Co metal occurs when the temperature of the reduction is above 700 degreesC. The addition of a second metal such as Co and Ni, decreases the formation temperature of carbide because the second metal promotes formation of CHx species from reactive carbon atoms or groups on carbon material and hydrogen, which further carburizes oxide precursors. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we demonstrate a novel and efficient route by which the shape-controlled synthesis of t-Se nano/microstructures including nanowires, nanorods, nanobelts, microtubes, and flowers, as well as uniform spheres of a-Se, can be readily realized based on solution-mediated heat treatment with commercially available Se powders. X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), Raman spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mg-4Al-4Nd-0.5Zn-0.3Mn alloy was prepared by metal mould casting method. Microstructure, aging behavior, mechanical properties and fracture morphology of the alloy were investigated. The results showed that alpha-Mg, Al-11 Nd-3, Al2Nd and Mg-32(Al,Zn)(49) phases were the main phases of the as-cast alloy. And the long rod-like Al-11 Nd-3 phase was decomposed to granular Al2Nd through T6 heat treatment. The tensile strength was also enhanced by T6 treatment. The yield strength was increased by 17% and 21% at RT and 150 degrees C, respectively. It was mainly because that the precipitates were refined through T6 treatment and this became more benefit to hinder dislocations slipping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perfectly hydrophobic (PHO) coatings consisting of silicone nanofibers have been obtained via a solution process using methyltrialkoxysilanes as precursors. On the basis of thermal gravimetry and differential thermal analysis (TG-DTA) and Fourier transform infrared spectroscopy (FTIR) results, the formula of the nanofibers was tentatively given and a possible growth mechanism of the nanofibers was proposed. Because of the low affinity between the coatings and the small water droplet, when using these coatings as substrate for collecting water vapor, the harvesting efficiency could be enhanced as compared with those from bare glass substrate for more than 50% under 25 degrees C and 60-90% relative humidity. By removing the surface methyl group by heat treatment or ultraviolet (UV) irradiation, the as-prepared perfectly hydrophobic surface can be converted into a superhydrophilic surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, monodisperse spherical zirconia (ZrO2) particles with a narrow size distribution were prepared by the controlled hydrolysis of zirconium butoxide in ethanol, followed by heat treatment in air at low temperature from 300 to 500 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, kinetic decay, and electron paramagnetic resonance were used to characterize the samples. The experimental results indicate that the annealed ZrO2 samples exhibit broad, intense visible photoluminescence. The annealing temperature is indispensable for the luminescence of the obtained ZrO2 particles. The emission colors of the ZrO2 samples can be tuned from blue to nearly white to dark orange by varying the annealing temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nearly monodisperse and well-defined one-dimensional (1D) Gd2O3:Eu3+ nanorods and microrods were successfully prepared through a large-scale and facile hydrothermal method followed by a subsequent heat treatment process, without using any catalyst or template. X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The size of the Gd2O3:Eu3+ rods could be modulated from micro- to nanoscale with the increase of pH value using ammonia solution. The as-formed product via the hydrothermal process, Gd(OH)(3):Eu3+, could transform to cubic Gd2O3:Eu3+ with the same morphology and a slight shrinking in size after a postannealing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Y2O3 : Eu3+ microspheres, with an average diameter of 3 mu m, were successfully prepared through a large-scale and facile solvothermal method followed by a subsequent heat treatment. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, inductive coupled plasma atomic absorption spectrometric analysis, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. These microspheres were actually composed of randomly aggregated nanoparticles. The formation mechanisms for the Y2O3 : Eu3+ microspheres have been proposed on an isotropic growth mechanism. The Y2O3 : Eu3+ microspheres show a strong red emission corresponding to D-5(0) -> F-7(2) transition (610 nm) of Eu3+ under ultraviolet excitation (259 nm) and low-voltage electron beams excitation (1-5 kV), which have potential applications in fluorescent lamps and field emission displays.

Relevância:

60.00% 60.00%

Publicador: