326 resultados para GLASS-FORMING LIQUIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr52.5Al10Ni10Cu15Be12.5, Mg65Cu25Gd10 and Pd43Ni10Cu27P20 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, macroindentation and uniaxial compression. The significant difference in plastic deformation behavior cannot be correlated to the Poisson's ratio or the ratio of shear modulus to bulk modulus of the three BMGs, but can be explained by the free volume model. It is shown that the nucleation of local shear band is easy and multiple shear bands can be activated in the Zr52.5Al10Ni10Cu15Be12.5 alloy, which exhibits a distinct plastic strain during uniaxial compression and less serrated flow during nanoindentation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of tensile and compression tests on a short-glass-fiber-reinforced thermotropic liquid crystalline polymer are presented. The effect of strain rate on the compression stress-strain characteristics has been investigated over a wide range of strain rates epsilon between 10(-4) and 350 s-1. The low-strain-rate tests were conducted using a screw-driven universal tensile tester, while the high-strain-rate tests were carried out using the split Hopkinson pressure bar technique. The compression modulus was shown to vary with log10 (epsilon) in a bilinear manner. The compression modulus is insensitive to strain rate in the low-strain-rate regime (epsilon = 10(-4) - 10(-2) s-1), but it increases more rapidly with epsilon at higher epsilon. The compression strength changes linearly with log10 (epsilon) over the entire strain-rate range. The fracture surfaces were examined by scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a newly developed method of manufacturing spherical pressure vessels based on the technology of non-die explosive forming. Compared with the traditional method, this technology does not need any dies and pressing equipment, so that the cost of the production process can be greatly reduced, especially for vessels of less than 100 m3 capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic survey of the available data such as elastic constants, density, molar mass, and glass transition temperature of 45 metallic glasses is conducted. It is found that a critical strain controlling the onset of plastic deformation is material-independent. However, the correlation between elastic constants of solid glass and vitrification characteristics of its liquid does not follow a simple linear relation, and a characteristic volume, viz. molar volume, maybe relating to the characteristic size of a shear transformation zone (STZ), should be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an intriguing observation that the interaction of brittle nanoscale periodic corrugations (NPCs) can lead to the formation of ductile dimples on the dynamic fracture surface of a tough Vit 1 bulk metallic glass (BMG) under high-velocity plate impact. A “beat” phenomenon due to superposition of simple harmonic vibrations, approximately characterizing NPCs, is proposed to explain this unusual brittle-to-ductile transition. The present results agree well with our previously revealed energy dissipation mechanism in the fracture of BMGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.