69 resultados para Functions, Orthogonal
Resumo:
Some G-quadruplex DNA aptamers have been found to strongly bind hemin to form DNAzymes with peroxidase-like activity. To help determine the most suitable DNAzymes and to understand how they work, five previously reported G-quadruplex aptamers were compared for their binding affinity and then the potential catalytic mechanism of their corresponding hemin-G-quadruplex DNAzymes was explored. Among these aptamers, a G-quadruplex named AGRO100 was shown to possess the highest hemin-binding affinity and the best DNAzyme function. This means that AGRO100 is the most ideal candidate for DNAzyme-based analysis. Furthermore, we found the peroxidase-like activity of DNAzyme to be primarily dependent on the concentration of H2O2 and independent of that of the peroxidase substrate (that is, 2,2-azino-bis(3-ethytbenzothiazoline-6-sulfonic acid)diammonium salt). Accordingly, a reaction mechanism for DNAzyme-catalyzed peroxidation is proposed. This study provides new insights into the G-quadruplex-based DNAzymes and will help us to further extend their applications in the analytical field.
Resumo:
In this paper, the comparison of orthogonal descriptors and Leaps-and-Bounds regression analysis is performed. The results obtained by using orthogonal descriptors are better than that obtained by using Leaps-and-Bounds regression for the data set of nitrobenzenes used in this study. Leaps-and-Bounds regression can be used effectively for selection of variables in quantitative structure-activity/property relationship(QSAR/QSPR) studies. Consequently, orthogonalisation of descriptors is also a good method for variable selection for studies on QSAR/QSPR.
Resumo:
Orthogonal descriptors is a viable method for variable selection, but this method strongly depend on the orthogonalisation ordering of the descriptors. In this paper, we compared the different methods used for order the descriptors. It showed that better results could be achieved with the use of backward elimination ordering. We predicted R-f value of phenol and aniline derivatives by this method, and compared it with classical algorithms such as forward selection, backward elimination, and stepwise procedure. Some interesting hints were obtained.
Resumo:
A novel device of multiple cylinder microelectrodes coupled with a parallel planar electrode was proposed. The feedback diffusion current at this device was studied using bilinear transformation of coordinates in the diffusion space, where lines of mass flux and equiconcentration are represented by orthogonal circular functions. The derived expression for the steady-state current shows that as the gap between cylindrical microelectrodes and planar electrode diminishes, greatly enhanced currents can be obtained with high signal-to-noise ratio. Other important geometrical parameters such as distance between adjacent microcylinders, cylinder radius, and number of microcylinders were also discussed in detail.
Resumo:
Crustacean haemocytes play important roles in the host immune response including recognition, phagocytosis, melanization, cytotoxicity and inter-cellular signal communication. Expressed sequence tags (ESTs) analysis is proved to be an efficient approach not only for gene discovery, but also for gene expression profiles performance. In order to further understand the innate immune system and defense mechanisms of Chinese shrimp at molecular level, complementary DNA library is constructed from the haemocyte tissue of Fenneropenaeus chinensis. A total of 2371 cDNA clones are successfully sequenced and the average sequence length is 460 bp. About 50% are identified as orthologs of known genes from other organisms by BLASTx and BLASTn program. By sequences comparability and analysis, 34 important genes including 177 ESTs are identified that may be involved in defense or immune functions in shrimp based on the known knowledge. These genes are categorized into five categories according to their putative functions in shrimp immune system: 13 genes are different types of antimicrobial peptides (AMP, penaeidin, antilipopolysaccharide factor, etc.), and their proportion is about 3 8%; 11 genes belong to prophenoloxidase system (prophenoloxidase, serine proteinase, serine proteinase inhibitor, etc.), and their proportion is about 32%; five genes have high homology with clotting protein (lectin, transglutaminase, etc), and their proportion is about 15%; three genes may be involved in inter-cell signal communication (peroxinectin, integrin), and their proportion is about 9%; two genes have been identified to be chaperone proteins (Hsc70, thioredoxin peroxidase), and their proportion is about 6%. These EST sequences enrich our understanding of the immune genes of F chinensis and will help farther experimental research into immune factors and improve our knowledge of the immune mechanisms of shrimp. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recent investigations show that normalized radar cross sections for C-band microwave sensors decrease under high wind conditions with certain incident angles instead of increase, as is the case for low to moderate wind speeds. This creates the problem of ambiguities in high wind speed retrievals from synthetic aperture radar (SAR). In the present work, four geophysical model functions (GMFs) are studied, namely the high wind C-band model 4 (CMOD4HW), C-band model 5 (CMOD5), the high wind vertical polarized GMF (HWGMF_VV), and the high wind horizontal polarized GMF (HWGMF_HH). Our focus is on model behaviours relative to wind speed ambiguities. We show that, except for CMOD4HW, the other GMFs exhibit the wind speed ambiguity problem. To consider this problem in high wind speed retrievals from SAR, we focus on hurricanes and propose a method to remove the speed ambiguity using the dominant hurricane wind structure.
Resumo:
Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3 center dot H2O form, NaOH form, NH2OH center dot HCl form and HCl form. Thereinto, NH2OH center dot HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH2OH center dot HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every farm of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3 center dot H2O form, NaOH form and NH2OH center dot HCl form might transform into steady HCl form. NaCl form, NH3 center dot H2O form, NaOH form and NH2OH center dot HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric CO2. Inorganic carbon which entered into sediments was about 4.98 x 10(10) g in the Jiaozhou Bay every year, in which about 1.47x10(10) g of inorganic carbon might be buried for a long time and about 3.51. x 10(10) g of inorganic carbon might return into seawater and take part in carbon recycling.
Resumo:
The present work is first reporting the hemolytic activity of venom from jellyfish Rhopilema esculentum Kishinouye extracted by different phosphate buffer solutions and incubated at different temperature according to the orthogonal test L6(1) x 3(6). Of the seven controllable independent variables, incubated temperature and phenylmethylsulfonyl fluoride (PMSF) had strongest effect on the hemolytic activity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The space currents definitely take effects on electromagnetic environment and also are scientific highlight in the space research. Space currents as a momentum and energy provider to Geospace Storm, disturb the varied part of geomagnetic field, distort magnetospheric configuration and furthermore take control of the coupling between magnetosphere and ionosphere. Due to both academic and commercial objectives above, we carry on geomagnetic inverse and theoretical studies about the space currents by using geomagnetic data from INTERMAGNET. At first, we apply a method of Natural Orthogonal Components (NOC) to decomposition the solar daily variation, especially for (solar quiet variation). NOC is just one of eign mode analysis, the most advantage of this method is that the basic functions (BFs) were not previously designated, but naturally came from the original data so that there are several BFs usually corresponding to the process really happened and have more physical meaning than the traditional spectrum analysis with the fixed BFs like Fourier trigonometric functions. The first two eign modes are corresponding to the and daily variation and their amplitudes both have the seasonal and day-to-day trend, that will be useful for evaluating geomagnetic activity indices. Because of the too strict constraints of orthogonality, we try to extend orthogonal contraints to the non-orthogonal ones in order to give more suitable and appropriate decomposition of the real processes when the most components did not satisfy orthogonality. We introduce a mapping matrix which can transform the real physical space to a new mathematical space, after that process, the modified components which associated with the physical processes have satisfied the orthogonality in the new mathematical space, furthermore, we can continue to use the NOC decomposition in the new mathematical space, and then all the components inversely transform back to original physical space, so that we would have finished the non-orthogonal decomposition which more generally in the real world. Secondly, geomagnetic inverse of the ring current’s topology is conducted. Configurational changes of the ring current in the magnetosphere lead to different patterns of disturbed ground field, so that the global configuration of ring current can be inferred from its geomagnetic perturbations. We took advantages of worldwide geomagnetic observatories network to investigate the disturbed geomagnetic field which produced by ring current. It was found that the ring current was not always centered at geomagnetic equator, and significantly deviated off the equator during several intense magnetic storms. The deviation owing to the tilting and latitudinal shifting of the ring current with respect to the earth’s dipole can be estimated from global geomagnetic survey. Furthermore those two configurational factors which gave a quantitative description of the ring current configuration, will be helpful to improve the Dst calibration and understand the dependence of ring current’s configuration on the plasma sheet location relative to the equator when magnetotail field warped. Thirdly, the energization and physical acceleration process of ring current during magnetic storm has been proposed. When IMF Bz component increase, the enhanced convection electric field drive the plasma injection into the inner magnetosphere. During the transport process, a dynamic heating is happened which make the particles more ‘hot’ when the injection is more deeply inward. The energy gradient along the injection path is equivalent to a kind of force, which resist the plasma more earthward injection, as a diamagnetic effect of the magnetosphere anti and repellent action to the exotically injected plasma. The acceleration efficiency has a power law form. We use analytical way to quantitatively describe the dynamical process by introducing a physical parameter: energization index, which will be useful to understand how the particle is heated. At the end, we give a scheme of how to get the from storm time geomagnetic data. During intense magnetic storms, the lognormal trend of geomagnetic Dst decreases depend on the heating dynamic of magnetosphere controlling ring current. The descending pattern of main phase is governed by the magnetospheric configuration, which can be describled by the energization index. The amplitude of Dst correlated with convection electric field or south component of the solar wind. Finally, the Dst index is predicted by upstream solar wind parameter. As we known space weather have posed many chanllenges and impacts on techinal system, the geomagnetic index for evaluating the activity space weather. We review the most popular Dst prediction method and repeat the Dst forecasting model works. A concise and convnient Key Points model of the polar region is also introduced to space weather. In summary, this paper contains some new quantitative and physical description of the space currents with special focus on the ring current. Whatever we do is just to gain a better understanding of the natural world, particularly the space environment around Earth through analytical deduction, algorithm designing and physical analysis, to quantitative interpretation. Applications of theoretical physics in conjunction with data analysis help us to understand the basic physical process govering the universe.