70 resultados para Fourier slice theorem
Resumo:
A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.
Resumo:
本文采用粉末X-射线衍射法,首次对不同产地的锁阳样品进行了分析,获得了锁阳的标准X衍射Fourier谱及特征标记峰,为锁阳药材的鉴定提供了新的谱学分析依据。
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.
Resumo:
As active electromagnetic method, field data of CSAMT method follow the equation of diffusion. Propagting in solid earth media, diffusion EM signal has strong attenuation and dispersion, otherwise seismic wave shows weak attenuation and dispersion, therefore the resolution power of CSAMT method is not better than seismic reflection method. However, there is consistence and similarity between EM signal and seismic wave in wave equation, we can apply Kirchhoff integral migration technique, a proven one in seismic method in time domain, to carry out seduo-seismic processing for CSAMT signal in frequency domain so that the attenuation and dispersion could be made compensated in some extent, and the resolution power and interpretation precision of active EM wave could be improved. Satisfying passive homogeneous Helmholtz quation, we proceed with Green theorem and combine the active inhomogenous Helmholtz quation, the Kirchhoff integral formula could be derived. Given practical problems, if we only consider the surface integral value, and assume that the intergral value in other interface is zero, combined with Green theorem in uniform half space, the expression could be simplified, and we can obtain frequency-domain Kirchhoff integral formula in surface, which is also called downward continuation of EM field in frequency domain. With image conditions and energy compensation considered, in order to get image conditions in time domain Fourier inverse transformation in frequency domain can be performed, so we can formulate the active Kirchhoff integral migration expression. At first, we construct relative stratified model, with different frequency series taken into account, then we change the distances between transmitter and reciever, the EM response can be obtained. Analyzing the EM properties, we can clarify near and far zone that can instruct us to carry out transmitter layout in practical application. Combined with field data surveyed in far zone, We perform Kirchhoff integral migration and compare the results with model to interpret. Secondly, with far field EM data, we apply TM mode to get EM response of given 2D model, then apply Kirchhoff integral migration on modelling data and interpret the results.
Resumo:
Theory of limit analysis include upper bound theorem and lower bound theorem. To deal with slope stability analysis by limit analysis is to approximate the real solution from upper limit and lower limit. The most used method of limit analysis is upper bound theorem, therefore it is often applied to slope engineering in many cases. Although upper bound approach of limit analysis can keep away from vague constitutive relation and complex stress analyses, it also can obtain rigorous result. Assuming the critical surface is circular slip surface, two kinematically admissible velocity fields for perpendicular slice method and radial slice method can be established according to the limit analysis of upper bound theorem. By means of virtual work rate equation and strength reduction method, the upper-bound solution of limit analysis for homogeneous soil slope can be obtained. A log-spiral rotational failure mechanism for homogeneous slope is discussed from two different conditions which represent the position of shear crack passing the toe and below the toe. In the dissertition, the author also establishes a rotational failure mechanics with combination of different logarithmic spiral arcs. Furthermore, the calculation formula of upper bound solution for inhomogeneous soil slope stability problem can be deduced based on the upper bound approach of rigid elements. Through calculating the external work rate caused by soil nail, anti-slide pile, geotechnological grid and retaining wall, the upper bound solution of safety factor of soil nail structure slope, slip resistance of anti-slide pile, critical height of reinforced soil slope and active earth pressure of retaining wall can be obtained by upper bound limit analysis method. Taking accumulated body slope as subject investigated, with study on the limit analysis method to calculate slope safety factor, the kinematically admissible velocity fields of perpendicular slice method for slope with broken slip surface is proposed. Through calculating not only the energy dissipation rate produced in the broken slip surfaces and the vertical velocity discontinuity, but also the work rate produced by self-weight and external load, the upper bound solution of slope with broken slip surface is deduced. As a case study, the slope stability of the Sanmashan landslide in the area of the Three Gorges reservoir is analyzed. Based on the theory of limit analysis, the upper bound solution for rock slope with planar failure surface is obtained. By means of virtual work-rate equation, energy dissipation caused by dislocation of thin-layer and terrane can be calculated; furthermore, the formulas of safety factor for upper bound approach of limit analysis can be deduced. In the end, a new computational model of stability analysis for anchored rock slope is presented after taking into consideration the supporting effect of rock-bolts, the action of seismic force and fissure water pressure. By using the model, not only the external woke-rate done by self-weight, seismic force, fissure water pressure and anchorage force but also the internal energy dissipation produced in the slip surface and structural planes can be totally calculated. According to the condition of virtual work rate equation in limit state, the formula of safety factor for upper bound limit analysis can be deduced.
Resumo:
Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.
Resumo:
The dissertation addressed the problems of signals reconstruction and data restoration in seismic data processing, which takes the representation methods of signal as the main clue, and take the seismic information reconstruction (signals separation and trace interpolation) as the core. On the natural bases signal representation, I present the ICA fundamentals, algorithms and its original applications to nature earth quake signals separation and survey seismic signals separation. On determinative bases signal representation, the paper proposed seismic dada reconstruction least square inversion regularization methods, sparseness constraints, pre-conditioned conjugate gradient methods, and their applications to seismic de-convolution, Radon transformation, et. al. The core contents are about de-alias uneven seismic data reconstruction algorithm and its application to seismic interpolation. Although the dissertation discussed two cases of signal representation, they can be integrated into one frame, because they both deal with the signals or information restoration, the former reconstructing original signals from mixed signals, the later reconstructing whole data from sparse or irregular data. The goal of them is same to provide pre-processing methods and post-processing method for seismic pre-stack depth migration. ICA can separate the original signals from mixed signals by them, or abstract the basic structure from analyzed data. I surveyed the fundamental, algorithms and applications of ICA. Compared with KL transformation, I proposed the independent components transformation concept (ICT). On basis of the ne-entropy measurement of independence, I implemented the FastICA and improved it by covariance matrix. By analyzing the characteristics of the seismic signals, I introduced ICA into seismic signal processing firstly in Geophysical community, and implemented the noise separation from seismic signal. Synthetic and real data examples show the usability of ICA to seismic signal processing and initial effects are achieved. The application of ICA to separation quake conversion wave from multiple in sedimentary area is made, which demonstrates good effects, so more reasonable interpretation of underground un-continuity is got. The results show the perspective of application of ICA to Geophysical signal processing. By virtue of the relationship between ICA and Blind Deconvolution , I surveyed the seismic blind deconvolution, and discussed the perspective of applying ICA to seismic blind deconvolution with two possible solutions. The relationship of PC A, ICA and wavelet transform is claimed. It is proved that reconstruction of wavelet prototype functions is Lie group representation. By the way, over-sampled wavelet transform is proposed to enhance the seismic data resolution, which is validated by numerical examples. The key of pre-stack depth migration is the regularization of pre-stack seismic data. As a main procedure, seismic interpolation and missing data reconstruction are necessary. Firstly, I review the seismic imaging methods in order to argue the critical effect of regularization. By review of the seismic interpolation algorithms, I acclaim that de-alias uneven data reconstruction is still a challenge. The fundamental of seismic reconstruction is discussed firstly. Then sparseness constraint on least square inversion and preconditioned conjugate gradient solver are studied and implemented. Choosing constraint item with Cauchy distribution, I programmed PCG algorithm and implement sparse seismic deconvolution, high resolution Radon Transformation by PCG, which is prepared for seismic data reconstruction. About seismic interpolation, dealias even data interpolation and uneven data reconstruction are very good respectively, however they can not be combined each other. In this paper, a novel Fourier transform based method and a algorithm have been proposed, which could reconstruct both uneven and alias seismic data. I formulated band-limited data reconstruction as minimum norm least squares inversion problem where an adaptive DFT-weighted norm regularization term is used. The inverse problem is solved by pre-conditional conjugate gradient method, which makes the solutions stable and convergent quickly. Based on the assumption that seismic data are consisted of finite linear events, from sampling theorem, alias events can be attenuated via LS weight predicted linearly from low frequency. Three application issues are discussed on even gap trace interpolation, uneven gap filling, high frequency trace reconstruction from low frequency data trace constrained by few high frequency traces. Both synthetic and real data numerical examples show the proposed method is valid, efficient and applicable. The research is valuable to seismic data regularization and cross well seismic. To meet 3D shot profile depth migration request for data, schemes must be taken to make the data even and fitting the velocity dataset. The methods of this paper are used to interpolate and extrapolate the shot gathers instead of simply embedding zero traces. So, the aperture of migration is enlarged and the migration effect is improved. The results show the effectiveness and the practicability.