108 resultados para Flow rate variation coefficient
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Low temperature (similar to 500 degrees C) growth properties of Si1-xGex by disilane and solid-Ge molecular beam epitaxy have been studied with an emphasis on surface morphology and growth kinetics. It is found that low-temperature growth(<500 degrees C) is in layer-by-layer mode and atomically-smooth surfaces have been obtained in as-grown samples with large Ge composition (>0.5). Ge composition dependence on substrate temperature, Ge cell temperature and disilane flow rate have been investigated. It is found that in low-temperature growth (less than or equal to 500 degrees C) and under large disilane flux, Ge composition increases with the increase of Ge flux and further increase of Ge flux leads to the saturation of Ge composition. Similar compositional dependence has been found at different growth temperatures. The saturated composition increases with the decrease of substrate temperature. The results can be explained if H desorption is assumed to occur from both Si and Ge monohydrides without diffusional exchange and the presence of Ge enhances H desorption on a Si site. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
High quality silicon nanowires (SiNWs) were grown directly from n-(111) silicon single crystal substrate by using Au film as a metallic catalyst. The diameter and length of the formed nanowires are 30-60 nm and from several micrometers to sereral tens of micrometers, respectively. The effects of Au film thickness, annealing temperature, growth time and N-2 gas flow rate on the formation of the nanowires were experimentally investigated. The results confirmed that the silicon nanowires with controlled diameter, length, shape and orientation can be obtained via reasonably choosing and optimizing various technical conditions. The formation process of the silicon nanowires is analyzed qualitatively based on solid-liquid-solid growth mechanism.
Resumo:
酸化油是油脂工业中以皂脚、油脚经酸化处理得到的产品。它的主要成分是游离脂肪酸及中性油,是生产脂肪酸的重要原料,但生产过程中有水解废水的产生,若将其直接排放,既污染了环境又浪费了资源。生物柴油的主要成分是脂肪酸甲酯(fatty acid methyl ester,FAME)。它具有原料丰富而且可再生、可生物降解、无毒、不含芳香烃、二氧化硫等污染物、燃烧排放低、闪点高、运输储存安全等特点。作为石化柴油的潜在替代能源,生物柴油因其独特的优越性和现实的需求越来越受到关注。利用酸化油生产生物柴油不仅可以缓解生物柴油原料不足问题,还可解决酸化油所带来的环境问题。
The convertion of acid oil to biodiesel by use of immobilized Candida lipase absorbed on textile cloth was studied in a fixed bed reactor, which can not only reduce the environmental pollution of acid oil, but also produce a substitute for petroleum diesel. The acid oil mixed with methanol was pumped into three fixed bed reactors in series, and the methanol was added with the molar flow rate same as the acid oil in each reactor. The effects of enzyme content, solvent content, water content, flow rate of reactant and temperature on the enzymatic reaction were analyzed. The result of orthogonal experiments indicates that the optimal transesterification can be performed under the following conditions: immobilized lipase content in acid oil, 20% ; hexane content in acid oil, 10% ; water content in acid oil, 10%, reaction temperature, 50 ℃ ; and flow rate of reactant, 0.08 g/rain. Under these conditions, the FAME content of 90.18% in the product is obtained. The immobilized lipase can be reused with relatively stable activity after glycerol being removed from the surface. By refining, most of the chemical and physical properties of biodiesel will meet the American and Germany biodiesel standards and exceed the Chinese standard of 0^# petroleum diesel except for carbon residue, density and kinematic viscosity.
Resumo:
The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.
Resumo:
The characteristic of biodiesel fuel production from transesterification of soybean oil is studied. The reactant solution is the mixture of soybean oil, methanol, and solvent. A new lipase immobilization method, textile cloth immobilization, was developed in this study. Immobilized Candida lipase sp. 99-125 was applied as the enzyme catalyst. The effect of flow rate of reaction liquid, solvents, reaction time, and water content on the biodiesel yield is investigated. Products analysis shows that the main components in biodiesel are methyl sterate, methyl hexadecanoate, methyl oleate, methyl linoleate, and methyl linolenate. The test results indicate that the maximum yield of biodiesel of 92% was obtained at the conditions of hexane being the solvent, water content being 20 wt%, and reaction time being 24 h.
Resumo:
We provide three-dimensional numerical simulations of conjugate heat transfer in conventional and the newly proposed interrupted microchannel heat sinks. The new microchannel heat sink consists of a set of separated zones adjoining shortened parallel microchannels and transverse microchambers. Multi-channel effect, physical property variations, and axial thermal conduction are considered. It is found that flow rate variations in different channels can be neglected, while heat received by different channels accounts for 2% deviations from the averaged value when the heat flux at the back surface of the silicon chip reaches 100 W/cm(2). The computed hydraulic and thermal boundary layers are redeveloping in each separated zone due to shortened flow length for the interrupted microchannel heat sink. The periodic thermal developing flow is responsible for the significant heat transfer enhancement. Two effects influence pressure drops across the newly proposed microchannel heat sink. The first one is the pressure recovery effect in the microchamber, while the second one is the head loss when liquid leaves the microchamber and enters the next zone. The first effect compensates or suppresses the second one, leading to similar or decreased pressure drop than that for the conventional microchannel heat sink, with the fluid Prandtl number larger than unity.
Resumo:
Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-conbustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant hunt transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved microcombustor.
Resumo:
在米脂山地微灌枣树示范基地研究了一定流量范围、不同灌水量条件下,地表滴灌水分在水平和垂直方向上的运移规律及滴灌结束后的水分再分布特征。试验结果表明:在流量稳定条件下,湿润体的水平和垂直扩散距离均与时间有显著的幂函数关系;在4.6~5.0 L/h的流量范围内,湿润体的水平和垂直扩散距离与灌水量也存在显著的幂函数关系;滴灌停止后24 h内的土壤湿润体扩散很大,湿润体平均含水量降低很快,24 h后的扩散较小,平均含水量下降较小,确定滴灌停止后24 h时的湿润体特征值可作为滴灌系统设计的依据。
Resumo:
表层土壤水分含量和饱和导水率对深层土壤水分的动态的变化具有重要的决定作用。在黄土高原坡地(50m×360 m)范围内进行网格(10 m×10 m)取样,用地统计学方法研究表层(0~30 cm)土壤饱和导水率和水分含量的空间变异特征。结果表明:1)坡地表层土壤密度变化规律为坡下位大于坡上位,土壤饱和导水率变异系数为0.37,属于中等变异强度;2)饱和导水率和自然对数化的饱和导水率在360 m尺度内均不具备空间结构特征,是纯随机变量,线性有基台模型适用于描述表层土壤水分的分布特征,水分分布存在明显的块金效应,并且随滞后距离的增加半方差变大;3)饱和导水率和水分含量从坡上位到坡下位均呈现波浪式变化,饱和导水率大的采样点土壤水分含量低,反之则高。
Resumo:
Epitaxial growth on n-type 4H-SiC 8°off-oriented substrates with a size of 10 × 10 mm~2 at different tem-peratures with various gas flow rates has been performed in a horizontal hot wall CVD reactor, using trichlorosilane (TCS) as a silicon precursor source together with ethylene as a carbon precursor source. The growth rate reached 23 μm/h and the optimal epilayer was obtained at 1600 ℃ with a TCS flow rate of 12 sccm in C/Si of 0.42, which has a good surface morphology with a low RMS of 0.64 nm in an area of 10 × 10μm~2. The homoepitaxial layer was oh-tained at 1500 ℃ with low growth rate (< 5μm/h) and the 3C-SiC epilayers were obtained at 1650 ℃ with a growth rate of 60-70μm/h. It is estimated that the structural properties of the epilayers have a relationship with the growth temperature and growth rate. Silicon droplets with different sizes are observed on the surface of the homoepitaxial layer in a low C/Si ratio of 0.32.
Resumo:
Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.
Resumo:
The paper reports a method of depositing SiO2, SiNx, a:Si, Si3N4 and SiOxNy dielectric thin films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD) on InP, InGaAs and other compound semiconductor optoelectronic devices,and give a technology of depositing dielectric thin films and optical coatings by ECR CVD on Laser's Bars. The experiment results show the dielectric thin films and optical coatings are stable at thermomechanical property,optical properties and the other properties. In addition, the dielectric thin film deposition that there is low leakage current is reported for using as diffusion and ion implatation masks in the paper. In the finally, the dielectric film refractive index can be accurately controlled by the N-2/O-2/Ar gas flow rate.