225 resultados para Electrostatic turbulance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

建立了一套双静电探针诊断系统,用于检测在气流量为4.2 slm、弧电流为80 A、真空事压力为165Pa的条件下纯氩直流非转移弧等离子体射流的电子温度及其分布.结果表明:发生器出口处射流中心的电子温度约为14 500 K,射流中电子温度随离开发生器出口的轴向或径向距离的增加而单调降低;径向电子温度梯度约为263 K/mm,轴向电子温度梯度为69 K/mm;射流中电子温度随弧电流增加而单调上升.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic measurements of the ion saturation current in the plasma plume by a double-electrostatic probe system were carried out. Regular signals obtained by the electros- tatic probe show good agreement with the stable plasma flow state. Dependence of the flow steadiness on the plasma generation parameters was discussed. As a fast response method, the double-electrostatic probe system is feasible to characterize the fluctuations in the plasma jet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. A low power arcjet-thruster of 1 kW-class with gas mixture of H2-N2 or pure argon as the propellant is fired at a chamber pressure about 10 Pa. The nozzle temperature is detected with an infrared pyrometer; a plate set perpendicular to the plume axis and connected to a force sensor is used to measure the thrust; a probe with a tapered head is used for measuring the impact pressure in the plume flow; and a double-electrostatic probe system is applied to evaluate the electron temperature. Results indicate that the high nozzle temperature could adversely affect the conversion from enthalpy to kinetic energy. The plume flow deviates evidently from the LTE condition, and the rarefied-gas dynamic effect should be considered under the high temperature and low-pressure condition in analyzing the experimental phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用有限元方法建立了二维模型,研究了飞秒激光作用下石英玻璃中导带电子的产生、激光能量的沉积、导带电子和能量扩散等微观过程.计算了导带电子扩散引起的局部净电荷及其形成的静电场分布,初步揭示了微爆炸的演化过程.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Hohlraum-like configuration is proposed for realizing a simple compact source for neutrons. A laser pulse enters a tiny thin-shelled hollow-sphere target through a small opening and is self-consistently trapped in the cavity. The electrons in the inner shell-wall region are expelled by the light pressure. The resulting space-charge field compresses the local ions into a thin layer that becomes strongly heated. An inward expansion of ions into the shell cavity then occurs, resulting in the formation at the cavity center of a hot spot of ions at high density and temperature, similar to that in inertial electrostatic confinement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical fluid model for resonance absorption during the oblique incidence by femtosecond laser pulses on a small-scale-length density plasma [k(0)L is an element of(0.1,10)] is proposed. The physics of resonance absorption is analyzed more clearly as we separate the electric field into an electromagnetic part and an electrostatic part. It is found that the characteristics of the physical quantities (fractional absorption, optimum angle, etc.) in a small-scale-length plasma are quite different from the predictions of classical theory. Absorption processes are generally dependent on the density scale length. For shorter scale length or higher laser intensity, vacuum heating tends to be dominant. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking. This can lead to heating of the plasma at the expanse of the wave energy. It is found that the optimum angle is independent of the laser intensity while the absorption rate increases with the laser intensity, and the absorption rate can reach as high as 25%. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of optical held and charge density in the interaction between ultraintense ultrashort pulse laser and plasma is studied by numerical computation. The plasma considered has an exponential density profile. which corresponds to isothermal expanding. Our calculation shows that electrons are pushed forward by the incident laser, but ions, due to their much greater inertia, remain stationary. The resulting charge displacement forms a strong electrostatic field in the plasma. After the interaction of laser pulse and plasma. electrostatic energy still exists even after the laser pulse and will be absorbed by the plasma finally. This serves as an explanation to the mechanism of laser energy deposited into plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two overrun effects in the Coulomb explosion dynamics of heteronuclear clusters have been investigated theoretically by the use of a simplified electrostatic model. When the charge-to-mass ratio of light ions is higher than that of heavy ions, the light ions can overtake the heavy ions inside the cluster and acquire a higher kinetic energy. Further, if the charge density of the heavy ions is twice as high as that of the light ions, i.e. a proposed competitive parameter xi = rho BqB/rho AqA > 2, the inner light ions can overtake those light ions on the surface of the cluster and form a shock shell during the explosion, which might drive the intracluster collision and fusion of the light ions. Different regimes of nuclear fusion are discussed and the corresponding neutron yields are estimated. Our analysis indicates that the probability of intracluster fusion is quite low even if deuterated heteronuclear clusters such as (DI)(n) with large size and high competitive parameter are employed. However, heteronuclear clusters are still a better candidate compared with homonuclear clusters for enhancing the total intercluster fusion yield because both a higher energy region and a higher proportion of deuterons distributing in the energy region can be created in the deuterated heteronuclear clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of an ultraintense circularly polarized laser pulse and a solid target is studied by one-dimensional particle-in-cell simulations. Ions at the front of the target are reflected by a moving quasisteady electrostatic field and obtain a relativistic velocity. At a laser intensity of 10(22) W/cm(2), almost half of the laser energy is transferred to ions and GeV ions are obtained. Effects of laser polarization state and target thickness on the laser energy conversion are investigated. It is found that a circularly polarized laser pulse can accelerate ions more efficiently than a linearly polarized laser pulse at the same laser and target parameters. A monoenergetic ion bunch is obtained for the ultrathin target, which is accelerated as a single entity. (c) 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用一简单的经典静电模型研究了甲烷团簇纯库仑爆炸情况下产生的离子平均动能。研究表明,甲烷团簇爆炸后离子获得的平均动能和离子的初始平均静电势能的比值,与团簇的尺寸大小无关。这意味着在甲烷团簇纯库仑爆炸近似下,不必使用分子动力学模拟,离子获得的动能可以通过这一比值以及离子的初始静电势能进行估算。给出了不同碳离子价态下的离子平均动能和其初始平均静电势能的比值。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Second-harmonic generation was observed in Ge(20)AS(25)S(55) chalcogenide glass irradiated by an electron beam. The second-harmonic intensity increased with increasing electron-beam current and accelerating voltage. The second-harmonic generation in Ge20As25S55 glass was caused by the space-charge electrostatic field that was generated by irradiation of an electron beam. Second-order nonlinearity chi ((2)) as great as 0.8 pm/V was obtained. The results of measurements of thermally stimulated depolarization current indicated that the glass was poled in the thin layers of its surface (several micrometers) and that the nonlinearity was stable. (C) 2001 Optical Society of America.