396 resultados para Electrochemical sensors
Resumo:
We report the electrochemical growth of gold nanowires with controlled dimensions and crystallinity. By systematically varying the deposition conditions, both polycrystalline and single-crystalline wires with diameters between 20 and 100 nm are successfully synthesized in etched ion-track membranes. The nanowires are characterized using scanning electron microscopy, high resolution transmission electron microscopy, scanning tunnelling microscopy and x-ray diffraction. The influence of the deposition parameters, especially those of the electrolyte, on the nanowire structure is investigated. Gold sulfite electrolytes lead to polycrystalline structure at the temperatures and voltages employed. In contrast, gold cyanide solution favours the growth of single crystals at temperatures between 50 and 65 degrees C under both direct current and reverse pulse current deposition conditions. The single-crystalline wires possess a [110] preferred orientation.
Resumo:
Polypyrrole nanostructure arrays, including simultaneously large quantities of nanowires and small quantities of partially filled nanotubules have been electrochemically synthesized in home-made etched ion-track polycarbonate (PC) templates. Diameter of the prepared nanostructures varies from 45 to 320 nm with their lengths up to 30 microns. Morphological studies of these nanostructures were performed by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. While optical absorption properties were studied by ultraviolet-visible-near infrared spectrophotometry (UV-vis-NIR). It has been observed that the absorption maximum of polypyrrole shifts to the longer wavelength side as the diameter of these nanostructures (nanowires and nanotubules) increases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.
Resumo:
The determination of glucose is possible with the enzymatic reaction of glucose oxidase and potentiometric detection. The signal is proportional to the concentration up to 50 mg/dl. This value is fixed by the concentration of oxygen in the sample. By adding catalase, concentrations up to 2000 mg/dl are detectable. The steepness of the calibration curve is not affected by oxygen concentrations greater than 4 mg/l. In contrast to amperometric sensors, an influence of deposits on the electrodes surface on the signal cannot be found with potentiometric sensors
Resumo:
Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
Thiosemicarbazone derivatives have been used as ion carriers for the preparation of PVC-matrix based mercury(II)-selective membrane sensors. The electrodes give near-Nernstian responses in the linear concentration range of 1.0×10-1-5.0×10-6 M with detection limits of the order of 10-6 M. The stable potentiometric signals are obtained within a short time period of 20-25s. The effect of different plasticizers has been studied and dioctylsebacate (DOS) found to give a better response in comparison to other plasticizers. Selectivity coefficient values (log KPotHg,M) have been evaluated using fixed interference method. Better selectivity for mercury(II) ions is observed over many of the monovalent (Na+, K+ and NH4+) and divalent ions (Mg2+, Ca2+, Zn2+, Pb2+, Ni2+, Co2+, etc.). The sensors have also been used as indicator electrodes in potentiometric titration of mercury(II) ions with EDTA and its determination in synthetic water samples.
Resumo:
Ti45Zr30Ni25Yx (x = 1, 3, 5 and 7) alloys were prepared by melt-spinning at wheel velocity of 20 m s(-1). The effect of additive Y on phase structure and electrochemical performance of melt-spun alloys was investigated. Ti45Zr30Ni25Yx melt-spun alloys were composed of I-phase and amorphous phase. T
Resumo:
Ti-based icosahedral quasicrystalline phase (I-phase) exhibited excellent hydrogen storage property for special structure. Unfortunately, the application as the negative electrode material of the nickel-metal hydride batteries was limited due to the poor electrochemical kinetics. Meanwhile, rare-earth element was beneficial to the electrochemical properties of Ti, Zr-based alloy.
Resumo:
Cu(OH)(2) nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)(2) nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)(2) nanowires. In addition, the FeOOH nanoribbons, Ni(OH)(2) nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD). Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG). (C) 2007 Elsevier Masson SAS. All rights reserved
Resumo:
Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.
Resumo:
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30+x% LaNi5 (x=0, 1, 5 and 10) hydrogen storage alloys have been investigated systematically. XRD shows that the matrix phase structure of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure is not changed after adding LaNi5 alloy. However, the amount of the secondary phase increases with increasing LaNi5 content. Field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS) shows that the C14 Laves phase contains more Zr and the white lard phase has a composition close to (Zr, Ti)(V, Cr, Ni, La)(2).
Resumo:
Microstructures and electrochemical properties of Ti0.26Zr0.07V0.21Mn0.1Ni0.33Mox (x=0,0.025,0.05,0.075, 0.10) electrode alloys have been investigated. The results of XRD analysis show that the alloys are mainly composed of V-based solid solution phase with body centered cubic (bcc) structure and C14 Laves phase with hexagonal structure. The addition of Mo element can imp ove the activation characteristics, maximum discharge capacity and cyclic durability for the electrode alloys