227 resultados para Electric waves
Resumo:
We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.
Resumo:
We investigate the higher spectral component generations driven by a few-cycle laser pulse in a dense medium when a static electric field is present. Our results show that, when assisted by a static electric field, the dependence of the transmitted laser spectrum on the carrier-envelope phase (CEP) is significantly increased. Continuum and distinct peaks can be achieved by controlling the CEP of the few-cycle ultrashort laser pulse. Such a strong variation is due to the fact that the presence of the static electric field modifies the waveform of the combined electric field, which further affects the spectral distribution of the generated higher spectral components.
Resumo:
The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.
Resumo:
We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.
Resumo:
We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.
Resumo:
The dependences of the recording properties of LiNbO3:Fe:Mn crystals on an external electric field (applied in the recording or fixing phase of the nonvolatile holographic recording process) are numerically investigated and the optimal conditions for applying an external electric field in this two-step process of nonvolatile holographic recording are discussed in detail. Significant improvement of the photorefractive performance has been found and experimental verifications using a small external electric field are described. Moreover, direct measures relating to the dominant photovoltaic mechanism in the doubly doped LiNbO3 crystals and the unconventional grating-enhanced fixing are revealed by applying an external electric field in the recording and the fixing phases, respectively.
Resumo:
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Resumo:
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We theoretically investigated the design of a metal-mirror-based reflecting polarizing beam splitter (RPBS). The metal mirror is a silver slab, which is embedded in the substrate of a rectangular silica transmission grating. By using a modal analysis and rigorous coupled-wave analysis, an RPBS grating is designed for operation at 1550 nm. When it is illuminated in Littrow mounting, the transverse electric (TE) and transverse magnetic (TM) waves will be mainly reflected in the minus-first and zeroth orders, respectively. Moreover, a wideband RPBS grating is obtained by adopting the simulated annealing algorithm. The RPBS gratings exhibit high diffraction efficiencies (similar to 95%) and high extinction ratios over a certain angle and wavelength range, especially for the minus-first-order reflection. This kind of RPBS should be useful in practical optical applications.
Resumo:
New exact solutions of the (2 + 1)-dimensional double sine-Gordon equation are studied by introducing the modified mapping relations between the cubic nonlinear Klein-Gordon system and double sine-Gordon equation. Two arbitrary functions are included into the Jacobi elliptic function solutions. New doubly periodic wave solutions are obtained and displayed graphically by proper selections of the arbitrary functions.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.