523 resultados para Doped-ceria
Resumo:
This letter reports the ultrabroadband infrared luminescence from 1000- to 1700-nm wavelength range and demonstrate optical amplification at the second optical communication window in a novel bismuth-doped germanosilicate glass. The full-width at half-maximum of the luminescence is about 300 mn and the optical gain is larger than 1.37 within the wavelength region from 1272 to 1348 nm with pump power 0.97 W. This material could be useful to fabricate ultrabroadband optical fiber amplifiers.
Resumo:
Lithium sodium mixed alkali aluminophosphate glasses of the composition xNa(2)O-(15-x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) (where x=0, 3.75, 7.5, 11.25 and 15 mol%) containing 0.5 mol% Er2O3 were prepared by melt quenching. The absorption spectra of Er3+ were studied from the experimental oscillator strengths and the Judd-Ofelt intensity parameters were obtained. The variations of Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), experimental oscillator strengths of certain excited states of Er3+ and hypersensitive band positions with different mixed alkali content have been discussed in detail. It was found that there were similar effects of mixed alkali on both Judd-Ofelt intensity parameter 02 and the experimental oscillator strength of the hypersensitive transition, I-4(15/2) -> H-2(11/2). No shifts in the peak wavelength of the studied transitions were found in different glasses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bismuth (Bi)-doped and Bi/Dy co-doped chalcohalide glasses are investigated as promising materials for amplifiers in optical communication. The samples synthesized at lower melting temperatures (MTs) are characterized by more intensified infrared emissions. With respect to the redox process of a liquid mixture at different MTs, we attribute an emission at 1230 nm to low-valent Bi ions. The lower MT favors the formation of LVB ions, i.e. Bi+ or Bi2+, while the higher MT promotes the production of higher-valent Bi ions Bi3+. An enhanced broadband infrared luminescence with the full-width at half-maximum over 200 nm is achieved from the present Bi/Dy co-doped chalcohalide glasses.
Resumo:
Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.
Resumo:
We report on the fabrication and characterization of low-loss planar and stripe waveguides in a Nd3+-doped glass by 6 MeV oxygen-ion implantation at a dose of 1x10(15) ions/cm(2). The dark mode spectroscopy of the planar waveguide was measured using a prism coupling arrangement. The refractive index profile of the planar waveguide was reconstructed from a code based on the reflectivity calculation method. The results indicate that a refractive index enhanced region as well as an optical barrier have been created after the ion beam processing. The near-field mode profiles of the stripe waveguide were obtained by an end-fire coupling arrangement, by which three quasitransverse electric modes were observed. After annealing, the propagation losses of the planar and stripe waveguides were reduced to be similar to 0.5 and similar to 1.8 dB/cm, respectively. (c) 2007 American Institute of Physics.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.
Resumo:
We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.
Resumo:
Intense Tm3+ blue upconversion emission has been observed in Tm3+-Yb3+ codoped oxyfluoride tellurite glass under excitation with a diode laser at 976 nm. Three emission bands centered at 475, 650 and 796 nm corresponding to the transitions (1)G(4) -> H-3(6), (1)G(4) -> H-3(4) and F-3(4) -> H-3(6), respectively, simultaneously occur. The dependence of upconversion intensities on Tm3+ ions concentration and excitation power are investigated. For fixed Yb2O3 concentrations of 5.0 mol%, the maximum upconversion intensity was obtained with Tm2O3 concentration of about 0.1 mol%. The blue upconversion luminescence lifetimes of the Tm3+ transitions (1)G(4) -> H-3(6) are measured. The results are evaluated by the possible upconversion mechanisms.
Resumo:
Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.
Resumo:
Fluorophosphate glasses with different contents of ErF3 were prepared. Due to the radiation trapping of Er, concentration dependence of the fluorescence lifetime is subject to distortion, and the stimulated-emission cross section calculated by the Fuchtbauer-Ladenburg equation is underestimated. The influence of radiation trapping on the measured fluorescence lifetime and width are investigated quantitatively. By comparing the intensity ratio of the 1556-1532 nm peak in the fluorescence spectrum with that in the stimulated-emission cross-section spectrum obtained according to the McCumber theory, the distortion ratio of fluorescence spectrum due to radiation trapping is obtained. An empirical way to quantitatively evaluate the influences of radiation trapping on fluorescence lifetime and width is proposed. (c) 2007 Optical Society of America.
Resumo:
We demonstrate the broadband optical amplification in bismuth-doped strontium germanate glass with 808 nm and 980 nm laser diodes (LDs) as excitation sources. The net optical gain has been obtained within the wavelength region of 1272 to 1348 nm with 808 nm laser diode under 0.97 W power. The maximum gain and gain coefficients are 1.23 and 1.03 cm(-1) at 1315 nm, respectively. The signal increment at 1300 nm is 2.8 times with 980 nm LD, under 3 W power. The differential thermal analysis measurement reveals the good thermal stability of the studied glass. This glass could be suggested as a promising gain medium for broadband optical amplifiers.
Resumo:
In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.
Resumo:
Broadband infrared luminescence centred at around 1300 nm with full-width at half maximum of about 342 nm was observed from transparent Ni2+-doped lithium-alumino-silicate glass-ceramics embedded with beta-eucryptite crystallines. The room temperature fluorescent lifetime was 98 mu s. The transparent glass-ceramics may have potential applications in a widely tunable laser and a super-broadband optical amplifier for optical communications.
Resumo:
This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass. The He+ ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar+ ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er3+/Yb3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation.
Resumo:
Er3+/Tm3+/Yb3+ tricloped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with F-4(9/2) -> I-4(15/2) and H-2(11/2), S-4(3/2) -> I-4(15/2) transition of Er3+ respectively. While the blue upconversion originates from (1)G(4) -> H-3(6) transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+. (c) 2006 Published by Elsevier B.V.