62 resultados para Dopamine Antagonists


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are a lot of differences in the neural mechanisms underlying between drug reward and natural reward despite the common neual basis. Undoubtedly, revealing the common and the different mechanisms underlying drug reward and natural reward will promote the development of research on drug addiction. Among diversified natural rewards, sex is often compared to drug because sexual reward has more similarities to drug. The mesolimbic dopamine system (VTA-NAc pathway) is a common pathway activated by natural reinforcers and addictive drugs, mediating reward, emotion and motivation under physiological conditions. The neuroadaptations taking place in the central nervous system including the mesolimbic dopamine system after repeatedly drug taking leads to persistent drug craving, Orexin, a neuropeptide produced in the lateral hypothalamus, plays an important role in reward-associated, motivated behaviors. Orexin neurons have extensive projections to the mesolimbic dopamine system. In order to further investigate the roles of orexin A in drug reward, this study examined the regulatory roles of orexin A in the VTA and NAcSh on drug reinforcement (acqusition of morphine CPP) and drug-seeking behavior (expression of morphine CPP). Moreover, the roles of orexin A on drug reward were compared with sexual reward. The main results are as follows: 1. The expression of morphine CPP was inhibited by intracerebroventricularly (i.c.v.) administered OX1R antagonist SB334867; 2. The male unconditioned sexual motivation was not affected by i.c.v. administered SB334867. However, i.c.v. given orexin A inhibited unconditioned sexual motivation in sexually high-motivated rats but did not affect sexual motivation in low-motivated rats; 3. The acquisition and expression of morphine CPP was inhibited by SB334867 microinjected into the VTA. SB334867 or orexin A injected into the NAcSh did not influence the acquisition of morphine CPP, but orexin A increased the locomotor activity in rats treated with morphine (3mg/kg); 4. SB334867 microinjected into the VTA did not affect male copulatory behavior, neither affect the acqusition of copulatory CPP; 5. The expression of copulatory CPP was associated with increased Fos protein expression in hypothalamic orexin A neurons, and SB334867 microinjected into the VTA inhibited expression of copulatory CPP. These results suggest that, (1) endogenous orexin A is not involved in male unconditioned sexual motivation, but involved in drug craving; (2) orexin A in the VTA instead of in the NAc is involved in drug reinforcement; (3) orexin A in the VTA is critical for drug-seeking behavior, but it is still unclear for the role of orexin A in the NAcSh; (4) in contrast to drug reinforcement, orexin A in the VTA is not involved in reinforcing effect of sexual reward. Orexin A plays a role both in drug-seeking behavior and in sexual reward-seeking behavior, but the different orexin A neuron populations may be responsible for the roles of orexin A in two types of reward. In a word, the differential roles of orexin A in drug and sexual reward are found in the present study, which provides some evidence for further research on the mechanisms of drug addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conceptualization of “depression” as a heterogenous disease has been widely accepted by most researchers. However, controlled experiments are rather sparse. To date, most studies demonstrated that animals with helplessness, a widely recognized behavioral index of “depression” also show varied comobidity expressions of other emotional behaviors, such as hightened or lightened anxiety level compared with controls. This means that distinct subtypes of “depression” may exist, in which different neural mechanisms may play roles. The present study aims to explore the possibility of behaviorally categorizing two depressive subtypes, referred as anxious helplessness and non-anxious helplessness, respectively. Then, by using RT-PCR, the dopamine D1, D2, D3 receptors mRNA expressions in medial prefrontal cortex (mPFC) and nucleus accubems (NAc) were quantified. The main findings are described as belows: 1. Uncontrollable shock could readily induce helpless behavior in shocked animals as a whole but with salient individual differences. Prior inescaoable shock induces subsuquent helplessness in approximately 40% shocked animals, while the other animals showed no sign of helpless expression, and were classified as non-helplessness. 2. Among helpless animals, the “subtype” of anxious helpless and non-anxious helpless could be identified according to the anxiety level evaluated by elevated plus maze. 3. D3 receptors mRNA expressions in the mPFC and NAc were increased in stressed animals after uncontrollable shock treatment. At the meanwhile, significant lower expressions of D2 receptors in the mPFC and NAc, and much lower expressions of D1 receptors in the mPFC were found in rats that did not become helpless after stress. In contrast, no significant difference between helpless and control animals was found in D1/D2 receptors mRNA expressions. 4. Based on above mentioned results, the up-regulation of D3 receptors in the mPFC and NAc may reflect a generalized effect of exposure to uncontrollalbe shock. While the down-regulation of D1\D2 receptors in the mPFC and decreased expression of D2 receptors in the NAc may be associated with adaptive or protective mechnisms which protecting animals from helplessness after uncontrollable shock treatment. 5. Futhermore, a significant negative relationship was found between anxiety level and D1 receptors expressions in the mPFC in helpless animals. Compared to the non-anxious helpless and control rats, the D1 receptors mRNA of anxious helpless rats were down-regulation in the mPFC. The present study indicated that the D1 dopamine receptor gene is associated with co-morbid depression and anxiety.