90 resultados para Dimensional Accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that the simplified Navier-Stokes (SNS) equations presented by Gao Zhi[1], Davis and Golowachof-Kuzbmin-Popof (GKP)[3] are respectively regular and singular near a separation point for a two-dimensional laminar flow over a flat plate. The order of the algebraic singularity of Davis and GKP equation[2,3] near the separation point is indicated. A comparison among the classical boundary layer (CBL) equations, Davis and GKP equations, Gao Zhi equations and the complete Navier-Stokes (NS) equations near the separation point is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regular perturbation technique is suggested to deal with the problem of one dimensional stress wave propagation in viscoelastic media with damage. Based upon the first order asymptotic solution obtained, the characteristics of wave attenuation are studied. In fact, there exist three different time-dependent phenomena featuring the dynamic response of the materials, the first expressing the characteristics of wave propagation, the second indicating the innate effect of visco-elastic matrix and the third coming from the time dependent damage. The comparision of first order asymptotic solution with the numerical results calculated by a finite difference procedure shows that the perturbation expansion technique may offer a useful approach to the problem concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with fracture analyses in 3-dimensional bodies containing a surface crack. A general solution of stress-strain fields at crack tip is proposed. Based on the stress-strain fields obtained, a high-order 3-dimensional special element is established to calculate the stress intensity factors in a plate with a surface crack. The variation of stress intensity factors with geometric parameters is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a summary of the authors' recent work in following areas: (1) The stress-strain fields at crack tip in Reissner's plate. (2) The calculations of the stress intensity factors in finite size plates. (3) The stress-strain fields at crack tip in Reissner's shell. (4) The calculations of the stress intensity factors and bulging coefficients in finite size spherical shells. (5) The stress-strain fields along crack tip in three dimensional body with surface crack. (6) The calculation of stress intensity factors in a plate with surface crack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional simplified model of an HF chemical laser is introduced. Using an implicit finite difference scheme, the solution of two adjacent parallel streams with diffusion mixing and chemical reaction is generated. A contour of mixing and reaction boundary is obtained without presupposition. The distribution of the HF(v) concentrations, gas temperature and the optical small signal gain (alpha sub V, J) on the flowing plane (X, Y) are presented. Compared with the solution solved directly from a set of Navier-Stokes equations, the results of these two methods agree with each other qualitatively. The influences of the different velocity, temperature (T sub 0) and composition of the two streams on the small signal gain after the nozzle exit are investigated. It is interesting that for larger J with a fixed v, the peaks of alpha sub v-T sub 0 profiles move towards higher T sub 0. The computing method is simple and only a short computing time is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The short-surface waves generated by a 3-D arbitrarily oscillating body floating onwater are discussed. In the far-field off the body, the phase and the amplitude functions ofthe radiated waves are determined by the ray method. An undetermined constant is includ-ed in the amplitude function. From the result of Ref. [1], the near-field boundary layersolution near the body waterline is obtained. The amplitude of this solution depends on thewhole wall shape of the body and the slope at the body waterline on the cross-sections per-pendicular to the waterline. By matching the far-field solution with the near-field bound-ary layer solution, the undetermined constant in the amplitude function of the far-fieldradiated waves is determined. For the special case of a half-submerged sphere which per-forms vertical oscillating motion, the result obtained in this paper is in agreement withthat of Ref. [ 2 ].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2-D short surface waves produced by a partially submerged cylinder which performsarbitrary oscillating motion are discussed. The uniformly valid solution which is applicableto all kinds of cylinder wall cases at waterline point is obtained. It is pointed out that thesolution obtained by Holford[J] for the vertical oscillating motion of a cylinder is incomplete.The reason why his solution cannot go over to that for the case of vertical cylinder wall atwaterline point is also pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213–218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/L 1 (L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 – 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.