156 resultados para Differential Scanning Calorimetry (DSC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization and melting behaviors of poly(propylene carbonate) end-capped with benzenesulfonyl/poly (vinyl alcohol) (PPC-BS/PVA) blends over rich PVA composition range were first investigated by differential scanning calorimetry (DSC). PPS-BS/PVA interaction parameter, chi(12), calculated from equilibrium melting temperature depression was -0.44, revealing miscibility of PPC-BS with PVA in the melt and favorable interactions. The temperature dependence of crystallization rate constant at initial crystallization stage was analyzed using the modified Lauritzen-Hoffman expression. The chain width, a(0), the thickness of a monomolecular layer, b(0), the fold and lateral surface-free energies, sigma(e) and sigma, and the work of chain folding, q, for neat PVA were first reckoned to be 4.50 Angstrom, 4.78 Angstrom, 76.0 erg.cm(-2), and 4.70 kcal.mol(-1), respectively. The values of sigma(e) and q for PVA in PPC-BS/PVA blends exhibited a maximum in the neighborhood of 10/90 PPC-BS/PV, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the isothermal and nonisothermal transitions of hexagonal crystal formation from the melt (transition 1) and of monoclinic crystal formation from hexagonal crystals (transition 2) for trans-1,4-polybutadiene (TPBD) was carefully carried out by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Isothermal transitions I and 2 are described by Avrami exponents (n) of approximate to1, whereas nonisothermal transitions I and 2 are described by n approximate to 4. These different eta values indicate that different crystallization mechanisms took place for different crystallization driving forces under isothermal and nonisothermal crystallization. The Ozawa equation was also used to analyze the nonisothermal crystallization data. For transition I at lower temperature, the Ozawa equation fits the data well; however, at higher temperature, there is an inflection that shifts to lower crystallinity with increasing temperature. Inflections are also observed with the Ozawa analysis for transition 2. Furthermore, the crystallinities at the turning points are almost in the same range as those determined by Avrami analysis for nonisothermal transitions I and 2, which suggests that the Ozawa analysis inflections are due to secondary crystallization. However, TEM revealed no morphology discrepancy between the TPBD hexagonal crystals formed from melt by isothermal and nonisothermal crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noncrosslinking linear low-density polyethylene-grafted acrylic acid (LLDPE-g-AA) was prepared by melt-reactive extrusion in our laboratory. The thermal behavior of LLDPE-g-AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low-density polyethylene (LLDPE), melting temperature (T-m) of LLDPE-g-AA increased a little, the crystallization temperature (T-c) increased about 4degreesC, and the melting enthalpy (DeltaH(m) ) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE-g-AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE-g-AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE-g-AA samples were lower than that of LLDPE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of neat PPS and PPS in blends with PMR-POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the structures and properties of the neutral and doped blends of poly(3-dodecylthiophene) (P3DDT) with low-density polyethylene (LDPE) were investigated. Wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), and scanning electron microscopy (SEM) were used to characterize the structures and morphologies of the blends, and conductivity was also measured. It was found that separate crystallizations occur between P3DDT and LDPE. When the amount of P3DDT is small in the blend, it has the effect of a nucleation reagent and has some influence on the crystal structure. After doping, the interaction force between the molecular chains increases, and leads to a more compact packing and a more uniform dispersion in morphology. Through blending, the thermal stability of pure component could be greatly improved, especially when the P3DDT content is 5 wt %. The conductivity measurements indicate that the conductivity increases with the increase of the P3DDT composition and doping time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different poly (methyl methacrylate) (PMMA) /SiO2 hybrids were prepared through sol-gel method involving PMMA emulsion (emulsion method) and PMMA/THF solution (solution method). The samples were characterized by differential scanning calorimetry(DSC), thermogravimetry analysis(TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that PMMA/SiO2 composites in nanoscale were prepared by emulsion method, and its size of phase heterogeneity was less than that of solution method. Meanwhile, the polymer emulsion as the reactive medium was more suitable for the formation of SiO2 network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB) and maleated PHB with different graft degree were studied by using differential scanning calorimetry (DSC). The Avrami analysis indicates that the introduction of maleic anhydride results in the decrease in the overall crystallization rate of PHB, but does not affect its nucleation mechanism and geometry of crystal growth. The activation energy of the overall crystallization process increases with the increase in graft degree. The phenomenon of multiple melting endotherms is observed, which results from melting and recrystallization during the DSC heating run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and thermal properties of polyamide-1010 (PA1010), treated at 250degreesC for 30 min under pressures of 0.7-2.5 GPa, were studied with wide-angle X-ray diffraction (WAXD), infrared (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Crystals were formed when the pressures were less than 1.0 GPa or greater than 1.2 GPa. With increasing pressure, the intensity of the diffraction peak at approximately 24degrees was enhanced, whereas the peak at approximately 20degrees was depressed. The triclinic crystal structure of PA1010 was preserved. The highest melting temperature of the crystals obtained in this work was 208degreesC for PA1010 treated at 1.5 GPa. Crosslinking occurred under pressures of 1.0-1.2 GPa. Only a broad diffraction peak centered at approximately 20degrees was observed on WAXD patterns, and no melting and crystallization peaks were found on DSC curves. IR spectra of crosslinked PA1010 showed a remarkable absorption band at 1370 cm(-1). The N-H stretching vibration band at 3305 cm(-1) was weakened. Crystallized PA1010 had a higher thermal stability than crosslinked PA1010, as indicated on TGA curves by a higher onset temperature of decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8C, 115.9 degreesC, 113.3 degreesC with the decreasing of degree of branching. Increasing the branch content decreases the rate of secondary nucleation, i,relative to the rate of surface spreading and so increases the range of supercooling over which regime I exists. The rate of bulk crystallization for both isothermal and non-isothermal crystallization decreases with the increasing of degree of branching. Both Ozawa Equation and Kissinger Equation are invalid for non-isothermal crystallization kinetics of SCBPE fractions,that means the effects of the branched chain on crystallization process are more complex than expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10C/min), only stable crystal from I is formed. With the cooling rate being high (>20 degreesC/min), the metastable crystal form II is formed, which always coexists with form I. The liquid crystalline phase plays an important role in the formation of metastable phase form II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of physical aging on the tensile fracture behavior of notched Polyphenylquinoxaline (PPQ-E) samples has been studied. The dependence of fracture stress and strain on physical aging has been explained. The glass transition temperature (T-g) and the endothermic peak at the end of T-g transition with different physical aging were characterized using differential scanning calorimetry (DSC) and the results have also been explained. The morphology of fracture surface was observed by scanning electron microscopy (SEM). (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

poly(epsilon-caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by sol-gel approach and the crystalline behavior of PCL in the silica networks has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The degree of PCL crystallinity in the PCL/SiO2 hybrid networks reduces with the increase of SiO2 content. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid materials. The melting points of PCL in the networks are lower than that of pure PCL,but they almost have a same value. WAXD results show that when the PCL weight percentage is higher than 40wt% in the hybrid samples,part of PCL can crysatllize and the PCL crystallites are almost in a same size. That means the crystalline movement of PCL molecular chains is strictly confined by the porous gel. The crystalline PCL in the hybrid samples is relatively free from the composition of the materials, because the crystallization temperature and melting point of PCL of the samples are almost equal,and the crystalline PCL of different samples has the same crystalline structure and the same crystallite sizes L-110 and L-200, that means the crystalline part of PCL in the hybrid samples is unperturbed and the porous silica gel gives enough space for PCL to crystallize into the same crystalline structure and the same size crystallites.