174 resultados para Cyanobacteria -- Biodegradation
Resumo:
The planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are the attractive candidates for bio-control of plankton communities to eliminate odorous populations of cyanobacteria. However, few studies focused on the health of such fishes in natural water body with vigorous toxic blooms. Blood parameters are useful and sensitive for diagnosis of diseases and monitoring of the physiological status of fish exposed to toxicants. To evaluate the impact of toxic cyanobacterial blooms on the planktivorous fish, 12 serum chemistry variables were investigated in silver carp and bighead carp for 9 months, in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. The results confirmed adverse effects of cyanobacterial blooms on two phytoplanktivorous fish, which mainly characterized with potential toxicogenomic effects and metabolism disorders in liver, and kidney dysfunction. In addition, cholestasis was intensively implied by distinct elevation of all four related biomarkers (ALP, GGT, DBIL, TBIL) in bighead carp. The combination of LDH, AST activities and DBIL, URIC contents for silver carp, and the combination of ALT. ALP activities and TBIL, DBIL. URIC concentrations for bighead carps were found to most strongly indicate toxic effects from cyanobacterial blooms in such fishes by a multivariate discriminant analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A previously unknown cyanophage, PaV-LD (Planktothrix agardhii Virus isolated from Lake Donghu), which causes lysis of the bloom-forming filamentous cyanobacterium P. agardhii, was isolated from Lake Donghu, Wuhan, China. PaV-LD only lysed P. agardhii strains isolated from Lake Donghu and not those isolated from other lakes. The PaV-LD particle has an icosahedral, non-tailed structure, ca. 70 to 85 nm (mean +/- SD = 76 +/- 6 nm) in diameter. PaV-LD was stable at freezing temperature, but lost its infectivity at temperatures >50 degrees C. Lysis of host cells was delayed about 3 d after the PaV-LD treatment with chloroform, and the virus was inactivated by exposure to low pH (<= 4). The latent period and burst size of the PaV-LD were estimated to be 48 to 72 h and about 340 infectious units per cell, respectively. The regrowth cultures of surviving host filaments were not lysed by the PaV-LD suspension. To our knowledge, this is the first isolation and cultivation of a virus infectious to the filamentous bloom-forming cyanobacterium Planktothrix from a freshwater lake.
Resumo:
In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorum, but no significant effect is found in this study.
Resumo:
Both arsenic pollution and eutrophication are prominent environmental issues when considering the problem of global water pollution. It is important to reveal the effects of arsenic species on cyanobacterial growth and toxin yields to assess ecological risk of arsenic pollution or at least understand naturally occurring blooms. The sensitivity of cyanobacteria to arsenate has often been linked to the structural similarities of arsenate and phosphate. Thus, we approached the effect of arsenate with concentrations from 10(-8) to 10(-4) M on Microcystis strain PCC7806 under various phosphate regimes. The present study showed that Microcystis strain PCC7806 was arsenate tolerant up to 10(-4) M. And such tolerance was without reference to both content of intra- and extra-cellular phosphate. It seems that arsenate involved the regulation of microcystin synthesis and cellular polyphosphate contributed to microcystin production of Microcystis responding to arsenate, since there was a positive linear correlation of the cellular microcystin quota with the exposure concentration of arsenate when the cells were not preconditioned to phosphate starvation. It is presumed that arsenate could help to actively export microcystins from living Microcystis cells when preconditioned to phosphate starvation and incubated with the medium containing 1 mu M phosphate. This study firstly provided evidence that microcystin content and/or release of Microcystis might be impacted by arsenate if it exists in harmful algal blooms. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24:97 94, 2009.
Resumo:
The success of some phylogenetic markers in cyanobacteria owes to the design of cyanobacteria-specific primers, but a few studies have directly investigated the evolution "behavior" of the loci. In this study, we performed a case study in Nostoc to evaluate rpoC1, hetR, rbcLX, and 16S rRNA-tRNA(Ile)-tRNA(Ala)-23S rRNA internal transcribed spacer (ITS) as phylogenetic markers. The results indicated that the gene trees of these loci are not congruent with the phylogeny based on 16S rRNA gene. The mechanisms contributing to the incongruence include randomized variation and recombination. As the results suggested, one should be careful to choose the molecular markers for phylogenetic reconstruction at the intrageneric level in cyanobacteria.
Resumo:
Blooms of Microcystis aeruginosa frequently occur in many eutrophic lakes in China, however, there is very little experimental study on the relationship between Microcystis and rotifers from Chinese waters. The effects of different concentrations of toxic M. aeruginosa PCC7820 on two common freshwater rotifers Brachionus calyciflorus and B. rubens were investigated in laboratory experiments. B. calyciflorus was able to utilize this strain of M. aeruginosa as a food source. However, M. aeruginosa suppressed the survival and reproduction of B. calyciflorus at the highest concentration (10(6) cells/ml) probably due to the inadequate nutrition. B. rubens was inhibited by toxic M. aeruginosa PCC7820 and the inhibition increased with the increasing Microcystis concentration. Our study indicates that the two rotifers have different sensitivities to toxic M. aeruginosa and that toxic cyanobacteria may affect zooplankton community structure by differentially inhibiting the different zooplankton taxa.
Resumo:
Microcystins are a kind of cyclic hepatoxins produced by many species of cyanobacteria. The toxic effects of microcystins on animals and plants have been well studied. However, the reports about the effects of microcystins on microbial cells are very limited. In present paper, Escherichia coli was undertaken to determine the effect of microcystin-RR. These results suggested that microcystin-RR could prolong the growth of E. coli when exposed to high concentrations of microcystin-RR and cause the accumulation of ROS and induce the oxidant stress for a short time. The antioxidant system protects E. coli from oxidative damage.
Resumo:
This paper studied the seasonal changes of two common microcystins (MCs), MC-RR and -LR, in the commercially important mussel Corbicula fluminea in Lake Chaohu, where there occurred dense cyanobacteria. Occasional measurements were also made for MC in the mussel Arconaia lanceolat, the oligochaete Limnodilus hoffineisteri and the insect larva Chironomus sp. Mean MC of C. fluminea was much higher in hepatopancreas than in intestine and foot. Our study is the first to report accumulation of MCs in oligochaetes and aquatic insect larvae. The hi-h contents of MCs in the insect larvae suggest a great possibility for the transfer of MCs to benthos-feeding omnivores like common carp. According to the provisional standard by the WHO, 28.6% of the collected C. fluminea were harmful for human consumption, assuming a daily consumption of 300 by a person. It is recommended that edible mussels should not be collected for human consumption during toxic cyanobacterial blooms in Lake Chaohu.
Resumo:
Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.
Resumo:
The spring-summer successions of phytoplankton and crustacean zooplankton were examined weekly in Meiliang Bay of the subtropical Lake Taihu in 2004 and 2005. During the study period, the ecosystem of Meiliang Bay was characterized by (i) clearly declined nitrogen compounds (nitrate, TN, and ammonium) and slowly increased phosphorus compounds (TP and SRP), (ii) increased total phytoplankton density and rapid replacement of chlorophyta (mainly Ulothrix) by cyanobacteria (mainly Microcystis), and (iii) rapid replacement of large-sized crustaceans (Daphnia and Moina) by small-sized ones (Bosmina, Limnoithona, and Ceriodaphnia). Results from the CCA and correlation analysis indicate that the spring-summer phytoplankton succession was primarily controlled by abiotic factors. Cyanobacteria were mainly promoted by increased temperature and decreased concentrations of nitrogen compounds. The pure contribution of crustacean was low for the variation of phytoplankton suggesting a weak top-down control by crustacean zooplankton in the subtropical Lake Taihu.
Resumo:
Microcystin-LR (MC-LR) is the most frequently studied cyclic heptatoxin produced by cyanobacteria, which has tremendous negative impacts on fish, while its molecular mechanism behind remained unclear at present. Here, Affymetrix Zebrafish GeneChip was used to identify alterations in gene expression of zebrafish (Danio rerio) after MC-LR exposure. Among the 14,900 transcripts in the microarray, 273 genes were differentially expressed, in which 243 genes were elevated and 30 were decreased. According to GOstat analysis, MC-LR mainly influenced the cell cycle and mitogen-activated protein kinases (MAPK) signaling pathways. In addition, many immune-related genes were also influenced. These data suggest that MC-LR could promote tumorigenesis and cause immunotoxicity in fish. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l(-1)) and biomass (5.2 mg l(-1)) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0-100 mg l(-1) (r = -0.82, P < 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.
Resumo:
Studies on the colonization of environmentally extreme ground surfaces were conducted in a Mars-like desert area of Inner Mongolia, People's Republic of China, with microalgae and cyanobacteria. We collected and mass-cultured cyanobacterial strains from these regions and investigated their ability to form desert crusts artificially. These crusts had the capacity to resist sand wind erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration activities, particularly in confined spaces that will include greenhouses and habitats. We discuss the use of such crusts for the local control of desert sands in enclosed spaces on Mars. These experiments suggest innovative new directions in the applied use of microbe-mineral interactions to advance the human exploration and settlement of space.
Resumo:
The persistence time and risk of microcystin-RR (MC-RR) in cropland via irrigation were investigated under laboratory conditions. In order to evaluate the efficiency of the potential adsorption and biodegradation of MC-RR in cropland and the persistence time of MC-RR for crop irrigation, high performance liquid chromatography (HPLC) was used to quantify the amount of MC-RR in solutions. Our study indicated that MC-RR could be adsorbed and biodegraded in cropland soils. MC-RR at 6.5 mg/L could be completely degraded within 6 days with a lag phase of 1 - 2 days. In the presence of humic acid, the same amount of MC-RR could be degraded within 4 days without a lag phase. Accordingly, the persistence time of MC-RR in cropland soils should be about 6 days. This result also suggested the beneficial effects of the organic fertilizer utilization for the biodegradation of MC-RR in cropland soils. Our studies also demonstrated that MC-RR at low concentration (< 10 mu g/L) could accelerate the growth of plants, while high concentration of MC-RR (> 100 mu g/L) significantly inhibited the growth of plants. High sensitivity of the sprouting stage plants to MC-RR treatments as well as the strong inhibitory effects resulting from prolonged irrigation further indicated that this MC-RR growth-inhibition may vary with the duration of irrigation and life stage of the plants. (c) 2007 Published by Elsevier Ltd.