268 resultados para Crosswell Seismic
Resumo:
Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.
Resumo:
地震勘探的基本任务是测量由人工震源激发的各种地震波,通过对所得到的地震波场的数据记录进行必要的处理和解释而提取所需要的地质信息。不同的地震波场特征反应了不同的地质构造等信息,因此,对地震波场特征进行研究就显得非常重要。井间地震是在一口井中激发、另一口井中接收的一种特殊的地震勘探方法,其实际记录要比常规的地震记录复杂的多,其波场中的各种波也更丰富复杂,如何识别不同类型的波并研究它们的响应特征是一个非常必要的任务。正演模拟可以为地震数据采集、处理、解释提供理论依据,是井间地震波场特征分析的一种有效方法。 本文主要研究了井间地震的数值正演模拟问题,系统地介绍了射线追踪正演模拟和波动方程正演模拟方法,利用Visual Basic 6.0语言编写了相应的射线追踪正演模拟程序,而且分两种方法详细分析了井间地震数值模型的地震响应特征,为直观的井间地震波场识别和勘探地震数据反演提供了必要的依据。本文取得的主要成果如下: 1)在前人的VSP正演模拟的基础上,改进并总结出了一套井间地震射线追踪正演模型的制作方法。 2)编制了井间地震射线追踪正演模拟程序V1.0。 3)利用编写的井间地震正演模拟程序,作了两种射线追踪数值模拟试算;利用Tesseral声波方程正演模拟试算了含有楔形体和丘状体的理论模型;取得了较好的模拟数据。
Resumo:
环渤海湾海陆过渡带地区有着丰富的油气资源,但过渡带地区具有复杂地表和表层结构,特别是黄河口地区受泥沙影响严重,地震勘探技术受到较大限制,地震资料质量较差。本文针对该区勘探难点,开展过渡带地震波激发震源、检波器耦合、观测系统优化设计、精确定位等技术研究,重点解决滩涂带的激发和接收问题,保证检波器能真实地记录地表的振动,正确记录来自地下的地震反射信号,提高地震信号品质,并保证地震数据有效迭加。 围绕提高滩海过渡带地区地震勘探精度开展研究。在提高淤泥带检波器耦合方面,根据滩海过渡带地区的地震环境和地表结构,设计出不同类型的检波器耦合装置,增加了检波器与淤泥带地表的耦合,保证了检波器真实地记录地表振动,提高了勘探精度。通过多种方法联合应用,形成一套近地表结构精细调查及建模方法,获得了从陆地-过渡带-极浅海连续的高精度表层结构数据。并根据近地表结构模型,指导优选激发参数,形成高效耦合激发技术,提高地震波的主频和信噪比。针对水中检波器随潮水不断漂移而影响同相叠加难点,进行水中检波器的高精度定位技术研究,形成了初至定位和声纳定位联合定位的检波器高精度定位技术,提高地震资料叠加质量。通过研究炸药爆炸理论,优化延迟叠加震源参数,拓宽地震子波的频带,提高了地震资料的信噪比,减小了与气枪震源之间的差异。针对提高过渡带地震采集资料信噪比,提出了从地震波激发、地震波接收以及观测系统设计环节综合压噪方法。通过应用以上技术,滩海过渡带地震资料的信噪比和分辨率较老资料有明显的提高,取得了较好的勘探效果。
Resumo:
研究区位于郯庐断裂中段与济阳坳陷的构造结合部,区内走滑构造广泛发育,主要的走滑断裂有7条,分别是郯庐断裂带的东西两支、垦东断层、孤东断层、长堤断层、埕东断层和发育于垦东凸起中部的浅层走滑构造带。走滑构造带与油气富集带有着明显的对应关系。 通过对研究区内二维、三维地震测线和平面构造图的精细解释和分析,分别揭示了各走滑断裂在平面、剖面和三维空间上的构造形态。根据走滑断裂及其伴生构造的平面和剖面上的几何学特征,将研究区内的走滑断裂划分为三种类型:成熟型走滑断裂、隐伏型走滑断裂、不连续型的走滑断裂。 从理论模式研究入手,推导了拉分盆地中盆地的走滑速率与沉降速率之间的关系,证实了走滑速率同盆地的几何形状参数、最大沉降深度和盆地的沉降速率存在着稳定的数值关系。通过对莱州湾地区潍北凹陷基底沉降历史的分析,建立了潍北凹陷沉降速率与郯庐断裂中段走滑速率之间的经验关系式,进而求出郯庐断裂中段新生代右行走滑位移量的大小为40km。 运用2DMove软件,对研究区内四条典型剖面进行构造复原,计算出了各条剖面每个时期的伸展参数,对研究区构造活动强度进行了定量分析,揭示了研究区的构造演化规律。通过运用Ansys软件进行有限元模拟,恢复了晚白垩世晚期-古近纪早期研究区内的构造应力场和应变场,揭示了扭张作用是研究区内走滑断层开始走滑的主要原因。 通过上述分析,结合对究区内近几年勘探开发成功和失败的实例分析,全面探讨了走滑活动对于油气成藏“生”、“储”、“盖”、“圈”、“运”、“保”各因素的影响。
Resumo:
南海北部陆缘深水区(水深>300m)蕴藏着丰富的资源,我国对深水区的地质研究刚刚起步,但相关领域已成为科研热点。深水油气盆地的构造演化是油气勘探中最重要的基础性研究之一,因此针对我国南海北部陆缘深水区开展构造演化及其资源效应的研究具有重要的理论意义和实际意义。 本文利用钻井和地震资料并结合区域地质资料,重点研究了珠江口盆地深水区的结构和构造演化,取得如下创新性成果:1)首次利用半地堑分析方法系统解剖了研究区的结构、各构造单元发育特征,在此基础上指出五个有利油气运聚带;2)采用回剥法并利用最新资料进行校正,得到了研究区更为可靠的构造沉降曲线,重新划分了裂陷期和裂后期的分界,认为32Ma南海海底扩张之后裂陷作用仍在持续,直到23Ma左右才开始大规模裂后热沉降,并进一步解释了裂陷期延迟的形成机制;3)应用非连续拉张模型计算拉张系数的方程计算了研究区的壳幔拉张系数,指出了深水区地幔相对于地壳的优势伸展作用;首次运用平衡剖面技术重建了研究区的构造发育史,计算了各构造期的拉张率和沉积速率,指出研究区新生代整体呈现持续拉张,拉张系数在1.1-1.24之间;4)精细刻画了水合物钻采区的地质构造特征,建立了该区天然气水合物成藏的概念模式;建立了一套根据地震叠加速度计算流体势的方法,为水合物成藏规律的研究提供了新的思路。
Resumo:
地球物理方法是目前海域天然气水合物和游离气识别与预测分析的重要手段,并且已经由早期主要研究地层的速度和振幅信息发展到利用波形特征进行叠前反演,提取多种属性、多种弹性参数进行综合分析的阶段,因此对水合物地层进行综合地球物理属性研究具有重要的理论意义和实践意义。 本文通过对2001年东海973航次在冲绳海槽取得的多道地震数据进行有针对性的特殊处理,并通过精细地地震地层解释,发现海槽南部存在大量的泥底辟构造并伴生天然气水合物。针对DMS01-5测线上的泥底辟构造,分别从叠加速度分析、砂泥岩比分析、计算海底热流与实测海底热流对比分析、流体势能分析和波阻抗反演分析等几方面探讨了泥底辟型天然气水合物的地球物理特征,并对该处底辟顶部和其周围岩层中似海底反射(BSR)的成因进行了探讨,认为这里的BSR并不代表天然气水合物稳定带的底界,而分别对应于天然气水合物生成带的底界和游离气的顶界。 基于波动方程的一维半空间叠前全波形反演可以求取多个弹性参数,同时可以获得水合物沉积层精细的速度结构,这对天然气水合物和游离气的识别进而估算天然气水合物和游离气的含量至关重要。本文系统讨论了在Kennett广义反射透射系数矩阵正演基础上叠前全波形反演的遗传算法。Kennett广义反射透射系数矩阵正演算法包含了自由表面反射、薄互层层间多次反射波、透射反射波以及P-SV波之间的相互转换波,适合水合物层精细速度结构研究。采用遗传算法进行全波形反演克服了传统局部线性最优化方法依赖初始模型,需要利用目标函数导数信息的不足之处,算法收敛速度较快并且具有一定的稳定性。
Resumo:
大牛地气田是中石化在“十五”期间探明的一个大型岩性气田,成藏主要受储层发育程度的控制。储层为低孔低渗的致密碎屑岩储层,具有非均质性强,变化快的特点。由于地震资料分辨率比较低、砂泥阻抗差微弱、煤层屏蔽现象严重,造成砂体的地震响应特征不明显,加大了储层识别的难度,制约了气藏的勘探进程,因此,采用合适的储层预测技术对储层进行描述便显得尤为重要。 论文研究的总体思路是在地质沉积相研究的基础上,利用地震储层预测技术从定性—半定量—定量对储层进行雕刻。 论文总的研究内容分为地质沉积相研究和地震储层预测技术研究两大部分。 地质沉积相研究是地震预测的基础。利用地质资料和钻井资料对沉积相进行研究,证实在大牛地气田的西南部,发育二叠系山西组、下石盒子组的2条主河道,砂体纵向相互叠置,平面的分布受河道的控制。 在沉积相研究的基础上,利用地震预测技术对大牛地气田下石盒子组和山西组的储层进行预测,概括起来,有3大核心技术:核心技术之一:相控地震属性分析技术,对储层的宏观分布从地震上进行识别;核心技术之二:基于地质统计学理论的储层反演描述技术,对储层进行半定量的预测;核心技术之三:多信息融合的储层建模技术,对储层的岩性、物性、含气性进行定量的预测。 论文的创新点有3点:1、利用地震属性定性预测储层分布,通过岩石地球物理分析及地震属性优化,筛选出不同层系反映河道砂体的敏感地震属性;2、利用地震反演对储层半定量预测, Gr和中子的重构曲线反演和中子和密度曲线重构反演加大了岩性和气层识别的力度,克服了砂泥阻抗差微弱的困难,探索出一条煤系地层储层半定量预测的新方法;3、储层建模研究将沉积相研究和地震预测技术进行了有机的融合,把沉积相,属性预测和地震反演成果作为输入,定量的对储层的岩性、物性、含气性进行预测,达到了量化储层的目的。 通过上述研究,从宏观—微观,从定性—定量实现了对致密碎屑岩储层的预测。
Resumo:
Based on fine structural interpretation on seismic profiles of buried-hills in Huanghua depression, structural interpretation and balanced cross-section restoration of regional seismic profiles, drawing structural maps of main seismic interfaces, residual strata distribution of different ages in the Bohai Bay region and structural survey in the western Shandong uplifted area and the intracontinental orogeny of Yanshan mountain, the paper has studied pre-tertiary structural styles and tectonic evolution of the Bohai Bay region. There mainly develop 5 types of pre-tertiary structural style that are extension structure, compression structure, strike-slip structure, negative inversion structure and sliding structure in the Bohai Bay region. Among these 5 types of structural style, extension structure develops detachment fault and its controlling fault terrain structure and fault break slop; compression structure develops reverted fold, fault propagation fold, fault bent fold, imbricate thrust structure and triangle zone; strike-slip structure develops positive flower structure, negative flower structure, en-echelon structure and brush structure; negative reversion structure develops Indosinian compression and Yanshanian extension negative reversion structure, late Yanshanian compression and Cenozoic extension negative reversion structure; sliding structure develops interlayer sliding structure and detachment structure. According to Cangdong fault of SN direction, Zhangjiakou – Penglai fault and Qihe – Guangrao fault of NWW direction, the Bohai Bay region can be divided into 6 sub-regions in which structural direction and style is different from each other. Structural maps of bottom boundary of Cenozoic and upper Paleozoic manifest that main NNE structural direction is formed from late Yanshanian to Himalayan movement and minor NWW structural direction and a string of area more than 8000m are mainly suggest that Indosinian tectonic pattern strongly influence on Yanshanian and Himalayan movement. Residual strata distribution characteristics of middle to upper Neoproterozoic in the Bohai Bay region manifest that middle- to neo- aulacogen position may be corresponding to late Mesozoic uplifted zone. Residual Paleozoic distribution characteristics of main ENN suggest that structural alteration should be resulted from late Yanshanian to Himalayan movement while which of minor NWW structures suggest that deeper structure should restrict shallower structure. Structural patterns of main EW fold direction in the Bohai Bay region and thrust structure in eastern part are formed late Triassic in studied area. Granite magma intrusion of early to middle Jurassic mainly develops Yanshan mountain zone. Late Mesozoic rifting basins of NEE direction are widely distributed in the Bohai Bay region and granite magma intrusions are mainly distributed in Tancheng – Rongcheng zone. Mesozoic structural evolution in the Bohai Bay region is related to scissor convergent from east to west between North China plate and Yangtze plate and gradually reinforcing of the west circum-pacific tectonic tract while basin and range province of late Jurassic and early Cretaceous may be mainly related to lithospheric thinning of North China craton in late Mesozoic.
Resumo:
With the Oil field exploration and exploitation, the problem of supervention and enhaning combination gas recovery was faced.then proposing new and higher demands to precision of seismic data. On the basis of studying exploration status,resource potential,and quality of 3D seismic data to internal representative mature Oil field, taking shengli field ken71 zone as study object, this paper takes advantage of high-density 3D seismic technique to solving the complex geologic problem in exploration and development of mature region, deep into researching the acquisition, processing of high-density 3D seismic data. This disseration study the function of routine 3D seismic, high-density 3D seismic, 3D VSP seismic,and multi-wave multi-component seismic to solving the geologic problem in exploration and development of mature region,particular introduce the advantage and shortage of high-density 3D seismic exploration, put forward the integrated study method of giving priority to high-density 3D seismic and combining other seismic data in enhancing exploration accuracy of mature region. On the basis of detailedly studying acquisition method of high-density 3D seismic and 3D VSP seismic,aming at developing physical simulation and numeical simulation to designing and optimizing observation system. Optimizing “four combination” whole acquisition method of acquisition of well with ground seimic and “three synchron”technique, realizing acquisition of combining P-wave with S-wave, acquisition of combining digit geophone with simulation geophone, acquisition of 3D VSP seismic with ground seimic, acquisition of combining interborehole seismic,implementing synchron acceptance of aboveground equipment and downhole instrument, common use and synchron acceptance of 3D VSP and ground shots, synchron acquisition of high-density P-wave and high-density multi-wave, achieve high quality magnanimity seismic data. On the basis of detailedly analysising the simulation geophone data of high-density acquisition ,adopting pertinency processing technique to protecting amplitude,studying the justice matching of S/N and resolution to improving resolution of seismic profile ,using poststack series connection migration,prestack time migration and prestack depth migration to putting up high precision imaging,gained reliable high resolution data.At the same time carrying along high accuracy exploration to high-density digit geophone data, obtaining good improve in its resolution, fidelity, break point clear degree, interbed information, formation characteristics and so on.Comparing processing results ,we may see simulation geophone high-density acquisition and high precision imaging can enhancing resolution, high-density seismic basing on digit geophone can better solve subsurface geology problem. At the same time, fine processing converted wave of synchron acquisition and 3D VSP seismic data,acquiring good result. On the basis of high-density seismic data acquisition and high-density seismic data processing, carry through high precision structure interpretation and inversion, and preliminary interpretation analysis to 3D VSP seismic data and multi-wave multi-component seismic data. High precision interpretation indicates after high resolution processing ,structural diagram obtaining from high-density seismic data better accord with true geoligy situation.
Resumo:
Seismic While Drilling (SWD) is a new wellbore seismic technique. It uses the vibrations produced by a drill-bit while drilling as a downhole seismic energy source. The continuous signals generated by the drill bit are recorded by a pilot sensor attached to the top of the drill-string. Seismic wave receivers positioned in the earth near its surface receive the seismic waves both directly and reflection from the geologic formations. The pilot signal is cross-correlated with the receiver signals to compute travel-times of the arrivals (direct arrival and reflected arrival) and attenuate incoherent noise. No downhole intrusmentation is required to obtain the data and the data recording does not interfere with the drilling process. These characteristics offer a method by which borehole seismic data can be acquired, processed, and interpreted while drilling. As a Measure-While-Drill technique. SWD provides real-time seismic data for use at the well site . This can aid the engineer or driller by indicating the position of the drill-bit and providing a look at reflecting horizons yet to be encountered by the drill-bit. Furthermore, the ease with which surface receivers can be deployed makes multi-offset VSP economically feasible. First, this paper is theoretically studying drill-bit wavefield, interaction mode between drill-bit and formation below drill-bit , the new technique of modern signal process was applied to seismic data, the seismic body wave radiation pattern of a working roller-cone drill-bit can be characterized by theoretical modeling. Then , a systematical analysis about the drill-bit wave was done, time-distance equation of seismic wave traveling was established, the process of seismic while drilling was simulated using the computer software adaptive modeling of SWD was done . In order to spread this technique, I have made trial SWD modeling during drilling. the paper sketches out the procedure for trial SWD modeling during drilling , the involved instruments and their functions, and the trial effect. Subsurface condition ahead of the drill-bit can be predicted drillstring velocity was obtained by polit sensor autocorrelation. Reference decovolution, the drillstring multiples in the polit signal are removed by reference deconvolution, the crosscorrelation process enhance the signal-to-noise power ratio, lithologies. Final, SWD provides real-time seismic data for use at the well site well trajectory control exploratory well find out and preserve reservoirs. intervel velocity was computed by the traveltime The results of the interval velocity determination reflects the pore-pressure present in the subsurface units ahead of the drill-bit. the presences of fractures in subsurface formation was detected by shear wave. et al.
Resumo:
Proven by the petroleum exploration activities, the karsts-fissure reservoir in carbonate rocks is significant to find out the large scale oil & gas field. They are made up of the four reservoir types: karsts-cave, karsts-crack, crack-cave and fracture-pore-cave. Each reservoir space and each reservoir bed has different features of reservoir heterogeneity and small scale of pore-crack-cave. The fracture-cave reservoir in carbonate rocks is characteristic by multi-types and long oiliness well. The reservoir shape is controlled by the irregular pore-crack-cave. The development level of fracture and karst-cave is the key element of hydrocarbon enriching, high productivity and stable production. However, most of Carbonate formation are buried deeply and the signal-ration-noise of seismic reflection are very low. It is reason why the fracture-cave reservoir are difficult to be predicted effectively. In terms of surveyed and studied lots of the former research outcome, The author applied the methods of synthetical reservoir geophysical prediction from two ways including macrosopic and microcomic technics in terms of the reservoir-cap condition, geophysics and geology feature and difficulty of prediction in carbonate rocks. It is guiden by the new ideas of stratigraphy, sedimentology, sedimentography, reservoir geology and karst geology. The geophysics technology is key technics. In aspects of macroscopic studies, starting off the three efficiencies of controlling the reservoir distribution including sedimental facies, karst and fracture, by means of comprehensive utilization of geology, geophysics, boring well and well log, the study of reservoir features and karst inside story are developed in terms of data of individual well and multiple well. Through establishing the carbonate deposition model, karstic model and fracture model, the macro-distribution laws of carbonatite are carried out by the study of coherence analysis, seismic reflection feature analysis and palaeotectonics analysis. In aspects of microcosmic studies, starting off analysis in reservoir geophysical response feature of fracture and karst-cave model according to guidance of the macroscopic geological model in carbonate reservoir, the methods of the carbonate reservoir prediction are developed by comprehensively utilization of seismic multi-attribution intersection analysis, seismic inversion restricted by log, seismic discontinuity analysis, seimic spectrum attenuation gradient, moniliform reflection feature analysis and multiparameter karst reservoir appraisement.Through application of carbonate reservoir synthetical geophysics prediction, the author r successfully develops the beneficial reservoir distribution province in Ordovician of Katake block 1in middle Tarim basin. The fracture-cave reservoir distributions are delineated. The prospect direction and favorable aims are demonstrated. There are a set of carbonate reservoir prediction methods in middle Tarim basin. It is the favorable basic technique in predicting reservoir of the Ordovician carbonate in middle Tarim. Proven by exploration drilling, the favorable region of moniliform reflection fracture and pore-cave and cave-fracture in lower-middle Ordovician are coincidence with the region of hydrocarbon show. It’s indicated that the reservoir prediction methods described in the study of Ordovician carbonate formation are feasible practicably.
Resumo:
Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence
Resumo:
Theoretical research, laboratory test and field observation show that most of sediment rock has anisotropic features. It will produce some notable errors when applying isotropic methods such as prestack depth migration and velocity analysis to dada acquired under anisotropic condition; it also has a bad effect on geologic interpretation. Generally speaking, the vertical transverse isotropic media is a good approximation to geologic structure, thus it has an important realistic meaning for anisotropic prestack depth migration theory researching and precise complex geologic imaging if considering anisotropic effect of seismic wave propagation. There are two indispensable parts in prestack depth migration of realistic records, one is proper prestack depth migration algorithm, and the other is velocity analysis using prestack seismic data. The paper consists of the two aspects. Based on implicit finite difference research proposed by Dietrich Ristow et al (1997) about VTI media prestack depth migration, the paper proposed split-step Fourier prestack depth migration algorithm (VTISSF) and Fourier finite difference algorithm (VTIFFD) based on wave equation for VTI media, program are designed and the depth migration method are tested using synthetic model. The result shows that VTISSF is a stable algorithm, it generally gets a good result if the reflector dip is not very steep, while undermigration phenomena appeared in steep dips case; the VTIFFD algorithm bring us better result in steep dips with lower efficiency and frequency dispersion. For anisotropic prestack depth migration velocity analysis of VTI media, The paper discussed the basic hypothesis of VTI model in velocity analysis algorithm, basis of anisotropic prestack depth migration velocity analysis and travel time table calculation of VTI media in integral prestack depth migration. Then , analyzed the P-wave common imaging gather in the case of homogeneous velocity and vertically variable velocity . studied the residual correction in common imaging gather produced by media parameter error, analyzed the condition of flat event and correct depth in common imaging gather . In this case, the anisotropic model parameter vector is , is vertical velocity of a point at top surface, is vertical velocity gradient, and are anisotropic parameter. We can get vertical velocity gradient from seismic data; then the P-wave common imaging gather of VTI media whose velocity varies in vertical and horizontal direction, the relationship between media parameter and event residual time shift of common image gather are studied. We got the condition of flattening common imaging gather with correct depth. In this case the anisotropic model parameter vector is , is velocity gradient in horizontal direction. As a result, the vertical velocity grads can be decided uniquely, but horizontal velocity grads and anisotropic parameter can’t be distinguished if no priori information available, our method is to supply parameter by velocity scanning; then, as soon as is supplied we can get another four parameters of VTI media from seismic data. Based on above analysis, the paper discussed the feasibility of migration velocity analysis in vertically and horizontally varied VTI media, synthetic record of three models are used to test the velocity analysis method . Firstly, anisotropic velocity analysis test is done using a simple model with one block, then we used a model with multiple blocks, thirdly, we analyzed the anisotropic velocity using a part of Marmousi model. The model results show that this velocity analysis method is feasible and correct.
Resumo:
The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.
Resumo:
In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media