107 resultados para Coupled Chemical-reactions
Resumo:
A comprehensive two-dimensional liquid chromatographic separation system based on the combination of a CN column and an ODS column is developed for the separation of components in a traditional Chinese medicine (TCM) Rhizoma chuanxiong. Two columns are coupled by a two-position, eight-port valve equipped with two storage loops and controlled by a computer. The effluent is detected by both the diode array detector and atmospheric pressure chemical ionization (APCI) mass spectrometer. More than 52 components in the methanol extract of R. chuanxiong were resolved and 11 of them were preliminary identified according to their UV and mass spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.
Resumo:
The multiphoton ionization of the hydrogen-bonding cluster pyridazine-methanol (C4H4N2-CH3OH) was studied using a time-of-flight mass spectrometer at the wavelengths of 355 and 532 nm. At both wavelengths, a series of protonated C4H4N2-(CH3OH)(n)-H+ cluster ions were obtained. Relevant ab initio calculations were performed with HF and B3LYP methods. Equilibrium geometries of both neutral and ionic C4H4N2-CH3OH clusters, and dissociation channels and dissociation energies of ionic clusters, are presented. The results show that when C4H4N2-CH3OH is vertically ionized, C4H4N2H+ and CH3O are the dominant products via proton transfer reaction. A high energy barrier makes another channel corresponding to the production of C4H4N2H+ and CH2OH disfavored. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Banded spherulite patterns are simulated in three dimensions by means of a Coupled Logistic map lattice model. The patterns obtained by numerical calculation are consistent with those in experiments. The simulation results also indicate that the hand spacing is decreased with the increase of parameter mu in the Logistic map and increased with the increase of the coupling parameter e for cube lattices, and increased with the increase of the thickness of the lattice for polymer film, which is quite similar to the results in some experiments. Spiral pattern in three dimensions is also shown in this paper, which helps us understand the form of banded spherulite in polymers.
Resumo:
Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 10(9) Omega cm(2), whereas that for pure ER coating fell below 10(6) Omega cm(2) after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 mu m EB/ER coating protected steel-copper couple for at least 2000 h.
Resumo:
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim = 1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.
Resumo:
The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work electrospray ionization tandem mass spectrometry was used to explore the ester-exchange reactions for aconitine-type diester-diterpenoid alkaloids occurring during the process of decocting aconite root. The aconitines were screened in a diverse range of samples, including crude aconite, decoction of crude aconite, residues from decoction of crude aconite, prepared aconite, decoction of prepared aconite, decoction of prepared aconite with added palmitic acid, and decoction of a mixture of mesaconitine and hypaconitine standards with liquorice root. It was found that diester-diterpenoid aconitines were converted into lipo-alkaloids as well as monoester alkaloids by the decoction of aconite.
Resumo:
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D2O and CD3OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D2O and CD3OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4, Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M-d1 + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M-d1] and deuterium-labeling reagents to produce [Md-2 + H](+) for the isomer pair 1, 2 and [M-d1 + D](+) for the Isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the plasma generated from methyl acrylate under self-chemical ionization conditions were studied by use of a triple-quadrupole mass spectrometer. The adduct cation [C60C3H3O](+) and protonated molecular ion [C60H](+) were observed as the major product ions. The former adduct ion is formed by electrophilic reaction of C-60 with the ion [CH2=CHCO](+), a main fragment ion resulting from the methyl acrylate molecular ion [CH2=CHCOOCH3](+) through alpha cleavage. The latter ion is generated by proton transfer from protonated methyl acrylate to C-60. Semi-empirical quantum chemical calculations have been performed for the eight possible isomers of [C60C3H3O](+) at the Hartree-Fock level by use of the AMI method. The results show three types of cycloadducts as the most stable structures among the possible isomers.
Resumo:
All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.
Resumo:
The dissociation routes of the adduct ions [M+CH3CO](+) formed by ion-molecule reaction of isomeric phenylenediamines with acetyl ion from acetone under chemical ionization condition were investigated by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 40eV. The adduct ions are intermediate ion-neutral complexes.