124 resultados para Conus-venom Peptides
Resumo:
A new L-amino acid oxidase (designated as DRS-LAAO) was purified from Daboia russellii siamensis venom by ion-exchange, gel filtration and affinity chromatographies. DRS-LAAO is a homodimeric enzyme with a molecular weight of 120.0 kDa as measured by size
Resumo:
A novel disintegrin, jerdonin, was purified from the Trimeresurus jerdonii venom by means of gel filtration and reverse phase high pressure liquid chromatography. Its coding cDNA was also isolated from the venom gland. The jerdonin coding cDNA is part of
Resumo:
A nerve growth factor (NGF) was isolated from the venom of Chinese cobra (Naja naja ntr a) by ion exchange chromatography, gel filtration and fast protein liquid chromatography (FPLC). The N-terminal sequence of 22 amino acid residues was identical with other NGFs previously purified from the venom of the same genus. The NGF monomer molecular weight was estimated to be 13 500 by reducing SDS-PAGE and the isoelectric point was determined to be 7.2 by isoelectric focusing electrophoresis. NGF improved the epididymal sperm motility of male rats and increased the pregnancy rate and fetus number of mated female rats. The serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) of male rats administrated NGF + gossypol was lower than that of male rats administrated gossypol. Histological sections of testes and epididymides showed that NGF reduced the destructive effects of gossypol on rat testes. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
A highly active anticomplement factor (cobra venom factor) from the venom of Naja kaouthia in South Yunnan, China was isolated by sequential column chromatography (SP-Sephadex-C25, Q Sepharose HP and Sephadex G-150). It displays strong anticomplement acti
Resumo:
A fibrin(ogen)olytic serine protease from Trimeresurus jerdonii venom was identified and purified to SDS-polyacrylamide gel electrophoresis homogeneity. It is a single chain polypeptide with a molecular weight of 32 kDa under reduced condition and 28 kDa
Resumo:
A new metalloproteinase-disintegrin, named Jerdonitin, was purified from Trimeresurus jerdonii venom with a molecular weight of 36 kDa on SDS-PAGE. It dose-dependently inhibited ADP-induced human platelet aggregation with IC50 of 120 nM. cDNA cloning and sequencing revealed that Jerdonitin belonged to the class II of snake venom metalloproteinases (SVMPs) (P-II class). Different from other P-II class SVMPs, metalloproteinase and disintegrin domains of its natural protein were not separated, confirmed by internal peptide sequencing. Compared to other P-II class SVMPs, Jerdonitin has two additional cysteines (Cys219 and Cys238) located in the spacer domain and disintegrin domain, respectively. They probably form a disulfide bond and therefore the metalloproteinase and disintegrin domains cannot be separated by posttranslationally processing. In summary, comparison of the amino acid sequences of Jerdonitin with those of other P-II class SVMPs by sequence alignment and phylogenetic analysis, in conjunction with natural protein structure data, suggested that it was a new type of P-II class SVMPs. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A novel kinin-releasing and fibrin (ogen)olytic enzyme termed jerdonase was purified to homogeneity from the venom of Trimeresurus jerdonii by DEAE Sephadex A-50 anion exchange, Sephadex G-100 (superfine) gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). Jerdonase migrated as a single band with an approximate molecular weight of 55 kD under the reduced conditions and 53 kD under the non-reduced conditions. The enzyme was a glycoprotein containing 35.8% neutral carbohydrate. The N-terminal amino acid sequence of jerdonase was determined to be IIGGDECNINEHPFLVALYDA, which showed high sequence identity to other snake venom serine proteases. Jerdonase catalyzed the hydrolysis of BAEE, S-2238 and S-2302, which was inhibited by phenymethylsulfonyl fluoride (PMSF), but not affected by ethylenediaminetetraacetic acid (EDTA). Jerdonase preferentially cleaved the Aalpha-chain of human fibrinogen with lower activity towards Bbeta-chain. Moreover, the enzyme hydrolyzed bovine low-molecular-mass kininogen and releasing bradykinin. In conclusion, all results indicated that jerdonase was a multifunctional venom serine protease.
Resumo:
An L-amino acid oxidase (TM-LAO) from the venom of Hunan Trimeresurus mucrosquamatus was purified to homogenicity by three steps including DEAE Sephadex A-50 ion-exchange chromatography, Sephadex G-75 gel filtration and Resourse Q ion-exchange chromatography. TM-LAO is composed of two identical subunits with a molecular weight of 55 kD by SDS-polyacrylamide gel electrophoresis. The molecular weight was different with that of LAO purified from the same species distributed in Taiwan that was 70 kD. The 24 N-terminal ammo acid sequence of TM-LAO is ADNKNPLEECFRETNYEEFLEIAR, which shares high similarity with other Viperid snake venom LAOs and has moderate similarity with Elapid snake venom LAOs. Further studies found that TM-LAO inhibited the growth of E. colt, S. aurues and B. dysenteriae. TM-LAO also showed cytotoxicity and platelet aggregation activity. All the biological activities were eliminated by catalase, a H2O2 scavenger. It shows that these biological effects are possibly due to the formation of H2O2 produced by TM-LAO.
Resumo:
A fibrinogen-clotting enzyme designed as jerdonobin-II was isolated from the venom of Trimeresurus jerdonii. It differed in molecular weight and N-terminal sequence with the previously isolated jerdonobin, a thrombin-like enzyme from the same venom. The enzyme consists of a single polypeptide chain with molecular weights of 30,000 and 32,000 under non-reducing and reducing conditions, respectively. Jerdonobin-II showed weak fibrinogen clotting activity and its activity unit on fibrinogen was calculated to be less than one unit using human thrombin as standard. The precursor protein sequence of jerodonobin-II was deduced from cloned cDNA sequence. The sequence shows high similarity (identity = 89%) to TSV-PA, a specific plasminogen activator from venom of T stejnegeri. Despite of the sequence similarity, jerdonobin-II was found devoid of plasminogen activating effect. Sequence alignment analysis suggested that the replacement of Lys(239) in TSV-PA to Gln(239) in jerdonobin-II might play an important role on their plasminogen activating activity difference. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
以前从菜花烙铁头蛇毒中分离纯化到J erdonitin 。与其他Ⅱ型蛇毒金属蛋白酶相比, J erdonitin 由金属蛋白酶和去整合素两个结构域组成。但没有检测到其出血和纤维蛋白原降解活性, 推测可能高压液相色谱的有机溶液影响了其酶活性。采用不含高压液相色谱柱层析的新分离手段分离得到J erdonitin 。J erdonitin 在还原和非还原SDS2PAGE 电泳中分别呈现一条表观分子量为38 和36 kDa 的条带。像其他典型的蛇毒金属蛋白酶一样, J erdonitin 优先降解人纤维蛋白原的alpha 链, 并且该活性能被EDTA 完全抑制, 而PMSF 对其没有影响。J er2 donitin 不诱导小白鼠皮下出血。
Resumo:
By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta -bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present study aimed to establish a sensitive in vitro assay to assess the binding capacity of cat spermatozoa. Cat oocytes and epididymal sperm cells were isolated from gonads and cultured for in vitro fertilization. Before fertilization, the sperm ce