107 resultados para Contrast-enhanced
Resumo:
The recent release of the domestic dog genome provides us with an ideal opportunity to investigate dog-specific genomic features. In this study, we performed a systematic analysis of CpG islands (CGIs), which are often considered gene markers, in the dog
Resumo:
Prenatal stress can cause many long-term behavior changes in offspring, but whether prenatal stress can alter addictive behavior in offspring and postnatal enriched environment treatment (EE) can restore these changes are unknown. We reported here that pr
Resumo:
Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25-50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Trichosanthin (TCS) is a type 1 ribosome-inactivating protein (RIP) effective against HIV-1 replication. The mechanism is not clear. Present results suggested that the antiviral action tray be partly mediated through enhanced apoptosis on infected cells. TCS induced apoptosis in normal H9 cells and this action was more potent in those infected with HIV-1. In flow cytometry study, TCS induced larger population of apoptotic H9 cells chronically infected with HIV-1 in a dose-dependent manner. At TCS concentration of 25 mu g/ml. 8.4% of normal H9 cells were found to be apoptotic whereas the same concentration induced 24.5% in HIV-1 chronically infected cells. Such difference was not found in the control experiments without TCS treatment. Two other studies supported this action. Cytotoxic study showed that cell viability was always lower in HIV-1 infected cells after TCS treatment, and DNA fragmentation studs confirmed more laddering in infected cells. The mechanism of TCS induced apoptosis in normal or infected H9 cells is not clear. Results in this study demonstrated that TCS is snore effective in inducing apoptosis in HIV-1 infected cells. This may explain in part the antiviral action of TCS. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The effects of morphine on hippocampal sensory gating (N40) during the development of morphine dependence and withdrawal were investigated in the double click auditory evoked potential (EP) suppression paradigm. Rats were made dependent upon morphine hydrochloride by a series of injections (every 12h) over 6 days, followed by withdrawal after stopping morphine administration. Hippocampal gating was examined during the development of dependence and withdrawal. Moreover, the DA antagonist haloperidol was used to assess the contribution of dopamine to hippocampal gating induced by morphine. Our results showed that the morphine-treated rats exhibited significantly disrupted hippocampal gating during the development of morphine dependence and this disrupted gating was partially reversed by haloperidol pretreatment. In contrast, there was significantly enhanced hippocampal gating at the fifth and sixth days of withdrawal. The dynamics of hippocampal gating during the development of morphine dependence and withdrawal suggests the interaction between the hippocampus and opioids. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Central serotonin (5-HT) dysregulation contributes to the susceptibility for mental disorders, including depression, anxiety, and posttraumatic stress disorder, and learning and memory deficits. We report that the formation of hippocampus-dependent spatia
Resumo:
The effects of aniracetam on extracellular amino acid levels in the hippocampus of conscious gerbils, with or without transient cerebral ischemia/reperfusion, were measured by microdialysis and reverse phase-high performance liquid chromatography. Increased extracellular levels of aspartate and glutamate that were observed in the hippocampus of conscious gerbils during transient global forebrain ischemia were reversed by aniracetam. In contrast, the level of extracellular gamma-aminobutyric acid was increased, while taurine was maintained at a higher level than other amino acids by administration of aniracetam (100 mg/kg, p.o.) 60 min before ischemia. Further, in contrast to ischemic animals, administration of aniracetam (100 mg/kg, p.o.) enhanced the release of glutamate and aspartate in the normal gerbil hippocampus. The results suggest that these effects might be due to a partial calcium agonist activity of aniracetam, and that the effects of aniracetam on amino acid levels might be a mechanism of protection against delayed neuronal death in the ischemic hippocampus, thereby improving memory dysfunction induced by ischemia/reperfusion. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.
Resumo:
Many unicellular green algae can become yellow or red in various natural habitats due to mass accumulation of a secondary carotenoid, such as lutein, or astaxanthin. The accumulation of secondary carotenoids is generally thought to be a survival strategy of the algae under photo-oxidative stress or other adverse environmental conditions. The physiological role of the carotenoids in stress response is less well understood at the subcellular or molecular level. In this study, a stable astaxanthin overproduction mutant (MT 2877) was isolated by chemical mutagenesis of a wild type (WT) of the green microalga Haematococcus pluvialis Flotow NIES-144. MT 2877 was identical to the WT with respect to morphology, pigment composition, and growth kinetics during the early vegetative stage of the life cycle. However, it had the ability to synthesize and accumulate about twice the astaxanthin content of the WT under high light, or under high light in the presence of excess amounts of ferrous sulphate and sodium acetate. Under stress, the mutant exhibited higher photosynthetic activities than the WT, based on considerably higher chlorophyll fluorescence induction, chlorophyll autofluorescence intensities, and oxygen evolution rates. Cell mortality caused by stress was reduced by half in the mutant culture compared with the WT. Enhanced protection of the mutant against stress is attributed to its accelerated carotenogenesis and accumulation of astaxanthin. Our results suggest that MT 2877, or other astaxanthin overproduction Haematococcus mutants, may offer dual benefits, as compared with the wild type, by increasing cellular astaxanthin content while reducing cell mortality during stress-induced carotenogenesis.
Resumo:
Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.
Resumo:
We have previously reported the development of a novel genotoxic testing system based on the transcriptional response of the yeast RNR3-lacZ reporter gene to DNA damage. This system appears to be more sensitive than other similar tests in microorganisms, and is comparable with the Ames test. In an effort to further enhance detection sensitivity, we examined the effects of altering major cell wall components on cell permeability and subsequent RNR3-lacZ sensitivity to genotoxic agents. Although inactivation of single CWP genes encoding cell wall mannoproteins had little effect, the simultaneous inactivation of both CWP1 and CWP2 had profound effects on the cell wall structure and permeability. Consequently, the RNR3-lacZ detection sensitivity is markedly enhanced, especially to high molecular weight compounds such as 4-nitroquinoline-N-oxide (> sevenfold) and phleomycin (> 13-fold). In contrast, deletion of genes encoding representative membrane components or membrane transporters had minor effects on cell permeability. We conclude that the yeast cell wall mannoproteins constitute the major barrier to environmental genotoxic agents and that their removal will significantly enhance the sensitivity of RNR-lacZ as well as other yeast-based genotoxic tests.