96 resultados para Continuum hydrodynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the shock propagation through a dilute gas-particle suspension in an aligned baffle system. Numerical solution to two-phase flows induced by a planar shock wave is given based on the two-continuum model with interphase coupling. The governing equations are numerically solved by using high-resolution schemes. The computational results show the shock reflection and diffraction patterns, and the shock-induced flow fields in the 4-baffle system filled with the dusty gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dilatational plastic equations, which can include the effects of ductile damage, are derived based on the equivalency in expressions for dissipated plastic work. Void damage developed internally at the large-strain stage is represented by an effective continuum being strain-softened and plastically dilated. Accumulation of this local damage leads to progressive failure in materials. With regard to this microstructural background, the constitutive parameters included for characterizing material behaviour have the sense of internal variables. They are not able to be determined explicitly by macroscopic testing but rather through computer simulation of experimental curves and data. Application of this constitutive model to mode-I cracking examples demonstrates that a huge strain concentration accompanied by a substantial drop of stress does occur near the crack tip. Eventually, crack propagation is simulated by using finite elements in computations. Two numerical examples show good accordance with experimental data. The whole procedure of study serves as a justification of the constitutive formulation proposed in the text.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of a brief review of the continuum theory for macroscopic descriptions and the kinetic theory for microscopic descriptions in solid/liquid two-phase flows, some suggestions are presented, i.e. the solid phase may be described by the Boltzmann equation and the liquid phase still be described by conservation laws in the continuum theory. Among them the action force on the particles by the liquid fluid is a coupling factor which connects the phases. For dilute steady solid/liquid two-phase flows, the particle velocity distribution function can be derived by analogy with the procedures in the kinetic theory of gas molecules for the equilibrium state instead of being assumed, as previous investigators did. This done, more detailed information, such as the velocity probability density distribution, mean velocity distribution and fluctuating intensity etc. can be obtained directly from the particle velocity distribution function or from its integration. Experiments have been performed for dilute solid/liquid two-phase flow in a 4 x 6 cm2 sized circulating square pipe system by means of laser Doppler anemometry so that the theories can be examined. The comparisons show that the theories agree very well with all the measured data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The invariant representation of the spin tensor defined as the rotation rate of a principal triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of a linear tensorial equation. The result can be naturally specified to study the. spin of the stretch tensors and to investigate the relations between various rotation rate tensors encountered frequently in modern continuum mechanics. A remarkable formula which relates the generalized stress conjugate to the generalized strain in Hill's sense. to Cauchy stress, is obtained in invariant form through the work conjugate principle. Particularly, a detailed discussion on the time rate of logarithmic strain and its conjugate stress is made as the principal axes of strain arc not fixed during deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is aimed at establishing a statistical theory of rotational and vibrational excitation of polyatomic molecules by an intense IR laser. Starting from the Wigner function of quantum statistical mechanics, we treat the rotational motion in the classical approximation; the vibrational modes are classified into active ones which are coupled directly with the laser and the background modes which are not coupled with the laser. The reduced Wigner function, i.e., the Wigner function integrated over all background coordinates should satisfy an integro-differential equation. We introduce the idea of ``viscous damping'' to handle the interaction between the active modes and the background. The damping coefficient can be calculated with the aid of the well-known Schwartz–Slawsky–Herzfeld theory. The resulting equation is solved by the method of moment equations. There is only one adjustable parameter in our scheme; it is introduced due to the lack of precise knowledge about the molecular potential. The theory developed in this paper explains satisfactorily the recent absorption experiments of SF6 irradiated by a short pulse CO2 laser, which are in sharp contradiction with the prevailing quasi-continuum theory. We also refined the density of energy levels which is responsible for the muliphoton excitation of polyatomic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水动力学是流体力学的一个重要分支,有着悠久的研究与发展历史,形成了比较完整的学科体系.进入21世纪以来,资源开发、环境保护、国家安全已成为世界各国普遍关注的战略问题.我国的海防建设、海洋资源开发与海洋空间利用、海岸带综合规划和水环境保护、水资源开发与利用等为水动力学研究提出了新的迫切需求.本文阐述了水动力学研究的国家需求、国内外水动力学研究的现状和发展趋势,提出了近期有待研究的主要科学问题.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

最近,严宗毅教授编著的《低雷诺数流理论》已由北京大学出版社出版(2002年)。本书是适合于从事缓慢或小尺度黏性流动研究和有关工程技术人员参考的一本不可多得的专著,他也供高等院校有关专业研究生和高年级学生学习的一本优秀教材。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从基本的无网格光滑粒子法SPH(Smoothed Particle Hydrodynamics)近似出发,修正了模拟固体力学中大变形弹塑性碰撞的SPH方法.在边界处采用修正的边界条件,弹塑性分析过程中采用增量理论计算应力,迭代过程中用守恒光滑法进行滤波修正消除拉力不稳定.对SPH方法进行了程序实现,给出了杆弹塑性碰撞的算例.计算分析表明,SPH方法节点的影响域较大、精度较相同节点间距有限元法的结果有一定差距,但是通过增加粒子数量可以提高SPH的精度,保持了其简单性和计算大变形的特性.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过对固体中波动问题的模拟建立了一种光滑粒子法的新形式,一种运用SPH的核函数的类似有限体积法的计算方法.通过对统计体积的修正以及对边界粒子的核函数修正,较好地解决了SPH方法中长期以来制约其被广泛应用的主要问题之一边界条件的表述.在此基础上成功地在光滑粒子法中实现了透射边界条件的模拟.同时利用反卷积修正使得较大粒子间距下的计算结果的精度大大提高.这种方法不但保持了SPH的简单性,而且很容易实现应力边界条件.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is of utmost importance to understand the spallation behaviour of heterogeneous materials. In this paper, a driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. The spallation behavior of heterogeneity material is analyzed with this model. The heterogeniety of mesoscopic units is characterized in terms of Weibull modulus m of strength distibution and stress fluctuation parameter k. At high stress, the maximum damage increases with m; while at low stress, the maximum damage decreases. In addition, for low stress, severe stress fluctuation causes higher damage; while for high stress, causes lower damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An information preservation (IP) method has been used to simulate many micro scale gas flows. It may efficiently reduce the statistical scatter inherent in conventional particle approaches such as the direct simulation Monte Carlo (DSMC) method. This paper reviews applications of IP to some benchmark problems. Comparison of the IP results with those given by experiment, DSMC, and the linearized Boltzmann equation, as well as the Navier-Stokes equations with a slip boundary condition, and the lattice Boltzmann equation, shows that the IP method is applicable to micro scale gas flows over the entire flow regime from continuum to free molecular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructural heterogeneity and stress fluctuation play important roles in the failure process of brittle materials. In this paper, a generalized driven nonlinear threshold model with stress fluctuation is presented to study the effects of microstructural heterogeneity on continuum damage evolution. As an illustration, the failure process of cement material under explosive loading is analyzed using the model. The result agrees well with the experimental one, which proves the efficiency of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damage-induced anisotropy of quasi-brittle materials is investigated using component assembling model in this study. Damage-induced anisotropy is one significant character of quasi-brittle materials coupled with nonlinearity and strain softening. Formulation of such complicated phenomena is a difficult problem till now. The present model is based on the component assembling concept, where constitutive equations of materials are formed by means of assembling two kinds of components' response functions. These two kinds of components, orientational and volumetric ones, are abstracted based on pair-functional potentials and the Cauchy - Born rule. Moreover, macroscopic damage of quasi-brittle materials can be reflected by stiffness changing of orientational components, which represent grouped atomic bonds along discrete directions. Simultaneously, anisotropic characters are captured by the naturally directional property of the orientational component. Initial damage surface in the axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic quasi-brittle damage behaviors of concrete under uniaxial, proportional, and nonproportional combined loading are analyzed to elucidate the utility and limitations of the present damage model. The numerical results show good agreement with the experimental data and predicted results of the classical anisotropic damage models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model is presented to investigate the size-dependent elastic moduli of nanostructures with the effects of the surface relaxation surface energy taken into consideration. At nanoscale, due to the large ratios of the surface-to-volume, the surface effects, which include surface relaxation surface energy, etc., can play important roles. Thus, the elastic moduli of nanostructures become surface- and size-dependent. In the research, the three-dimensional continuum model of the nanofilm with the surface effects is investigated. The analytical expressions of five nonzero elastic moduli of the nanofilm are derived, and then the dependence of the elastic moduli is discussed on the surface effects and the characteristic dimensions of nanofilms.